Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Methods
2.3. Electrochemical Studies
2.4. Biological Studies
3. Results
3.1. Morphology, Structure, and Elemental Composition of the W-Coatings
3.2. Phase Composition of the W-Coatings
3.3. Bioresorption of the Pure Mg0.8Ca Alloy and W-Coatings
3.4. Electrochemical Properties
3.5. Biological Research
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kargozar, S.; Mozafari, M.; Hamzehlou, S.; Milan, P.B.; Kim, H.W.; Baino, F. Bone tissue engineering using human cells: A comprehensive review on recent trends, current prospects, and recommendations. Appl. Sci. 2019, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Qin, L.; Yang, K.; Ma, Z.; Wang, Y.; Cheng, L.; Zhao, D. Materials evolution of bone plates for internal fixation of bone fractures: A review. J. Mat. Sci. Techol. 2020, 36, 190–208. [Google Scholar] [CrossRef]
- Prakasam, M.; Locs, J.; Salma-Ancane, K.; Loca, D.; Largeteau, A.; Berzina-Cimdina, L. Biodegradable materials and metallic implants–A Review. J. Funct. Biomater. 2017, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Vert, M. Degradable and bioresorbable polymers in surgery and in pharmacology: Beliefs and facts. J. Mater. Sci. Mater. Med. 2009, 20, 437–446. [Google Scholar] [CrossRef]
- Teo, A.J.T.; Mishra, A.; Park, I.; Kim, Y.J.; Park, W.T.; Yoon, Y.J. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci. Eng. 2016, 2, 454–472. [Google Scholar] [CrossRef]
- Nagratha, M.; Alhalawani, A.; Yazdi, A.R.; Towler, M.R. Bioactive glass fiber fabrication via a combination of sol-gel process with electro-spinning technique. Mat. Sci. Eng. C 2019, 101, 521–538. [Google Scholar] [CrossRef]
- Farooq, I.; Imran, Z.; Farooq, U.; Leghari, A.; Ali, H. Bioactive glass: A material for the future. World J. Dent. 2012, 3, 199–201. [Google Scholar] [CrossRef]
- Łączka, M.; Cholewa-Kowalska, K.; Osyczka, A.M. Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants. Ceram. Int. 2016, 42, 14313–14325. [Google Scholar] [CrossRef]
- Rau, J.V.; Antoniac, I.; Fosca, M.; De Bonis, A.; Blajan, A.I.; Cotrut, C.; Graziani, V.; Curcio, M.; Cricenti, A.; Niculescu, M.; et al. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications. Mat. Sci. Eng. C 2016, 64, 362–369. [Google Scholar] [CrossRef]
- Drosos, G.I.; Babourda, E.; Magnissalis, E.A.; Giatromanolaki, A.; Kazakos, K.; Verettas, D.A. Mechanical characterization of bone graft substitute ceramic cements. Injury Int. J. Care Injured. 2012, 43, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Escobar, D.; Champagne, S.; Yilmazer, H.; Dikici, B.; Boehlert, C.J.; Hermawan, H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater. 2019, 97, 1–22. [Google Scholar] [CrossRef]
- Li, Y.; Jahr, H.; Zhou, J.; Zadpoor, A.A. Additively manufactured biodegradable porous metals. Acta Biomater. 2020, 115, 29–50. [Google Scholar] [CrossRef] [PubMed]
- Heiden, M.; Walker, E.; Stanciu, L. Magnesium, iron and zinc alloys, the trifecta of bioresorbable orthopaedic and vascular implantation–A Review. Biotechnol. Biomater. 2015, 5, 178. [Google Scholar] [CrossRef]
- Putra, N.E.; Mirzaali, M.J.; Apachitei, I.; Zhou, J.; Zadpoor, A.A. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Acta Biomater. 2020, 109, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Elsherif, M.; Salih, A.E.; Ul-Hamid, A.; Hussein, M.A.; Park, S.; Yetisen, A.K.; Butt, H. Surface modification and cytotoxicity of Mg-based bio-alloys: An overview of recent advances. J. Alloys Compd. 2020, 825, 154140–154157. [Google Scholar] [CrossRef]
- Crimu, C.; Bolat, G.; Munteanu, C.; Mareci, D. Degradation characteristics of Mg0.8Ca in saline solution with and without albumin protein investigated by electrochemical impedance spectroscopy. Mater. Corros. 2014, 66, 649–655. [Google Scholar] [CrossRef]
- Zhang, E.; Xu, L.; Yu, G.; Pan, F.; Yang, K. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J. Biomed. Mater. Res. A 2009, 90, 882–893. [Google Scholar] [CrossRef]
- Özarslan, S.; Şevik, H.; Sorar, İ. Microstructure, mechanical and corrosion properties of novel Mg-Sn-Ce alloys produced by high pressure die casting. Mat. Sci. Eng. C 2019, 105, 110064. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson. L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Muhaffel, F.; Cimenoglu, H. Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy. Surf. Coat. Techn. 2019, 357, 822–832. [Google Scholar] [CrossRef]
- Amiri, H.; Mohammadi, I.; Afshar, A. Electrophoretic deposition of nano-zirconia coating on AZ91D magnesium alloy for bio-corrosion control purposes. Surf. Coat. Techn. 2017, 311, 182–190. [Google Scholar] [CrossRef]
- Asri, R.I.M.; Harun, W.S.W.; Samykano, M.; Lah, N.A.C.; Ghani, S.A.C.; Tarlochan, F.; Raza, M.R. Corrosion and surface modification on biocompatible metals: A review. Mater. Sci. Eng. C 2017, 77, 1261–1274. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Kim, Y.K.; Ryu, M.H.; Bae, T.S.; Lee, M.H. Corrosion resistance and bioactivity enhancement of MAO coated Mg alloy depending on the time of hydrothermal treatment in Ca-EDTA solution. Sci. Rep. 2017, 7, 9061–9072. [Google Scholar] [CrossRef] [Green Version]
- Shadanbaz, S.; Dias, G.J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomater. 2012, 8, 20–23. [Google Scholar] [CrossRef]
- Johnson, I.; Lin, J.; Liu, H. Surface modification and coatings for controlling the degradation and bioactivity of magnesium alloys for medical applications. Orthop. Biomater. 2017, 331–363. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 2014, 10, 2919–2934. [Google Scholar] [CrossRef] [PubMed]
- Sedelnikova, M.B.; Sharkeev, Y.P.; Tolkacheva, T.V.; Khimich, M.A.; Bakina, O.V.; Fomenko, A.N.; Kazakbaeva, A.A.; Fadeeva, I.V.; Egorkin, V.S.; Gnedenkov, S.V.; et al. Comparative Study of the structure, properties, and corrosion behavior of Sr-containing biocoatings on Mg0.8Ca. Materials 2020, 13, 1942. [Google Scholar] [CrossRef]
- Dziadek, M.; Stodolak-Zych, E.; Cholewa-Kowalska, K. Biodegradable ceramic-polymer composites for biomedical applications: A review. Mat. Sci. Eng. C 2017, 71, 1175–1191. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Hafezi, M.; Nezafati, N.; Heasarki, S.; Nadernezhad, A.; Ghazanfari, S.M.H.; Sepantafar, M. Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: Bioactivity and biological properties. J. Ceram. Sci. Techn. 2014, 5, 1–12. [Google Scholar] [CrossRef]
- Zakaria, M.Y.; Sulong, A.B.; Muhamad, N.; Raza, M.R.; Ramli, M.I. Incorporation of wollastonite bioactive ceramic with titanium for medical applications: An overview. Mat. Sci. Eng. C 2019, 97, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Sedelnikova, M.B.; Sharkeev, Y.P.; Komarova, E.G.; Khlusov, I.A.; Chebodaeva, V. Structure and properties of the wollastonite–calcium phosphate coatings deposited on titanium and titanium–niobium alloy using microarc oxidation method. Surf. Coat. Techn. 2016, 307, 1274–1283. [Google Scholar] [CrossRef]
- Palakurthy, S.; Reddy, K.V.G.; Samudrala, R.K.; Azeem, P.A. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mat. Sci. Eng. C 2019, 98, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.; Mahmoud, E.M.; Bondioli, F.; Naga, S.M. Developing porous diopside/hydroxyapatite bio-composite scaffolds via a combination of freeze-drying and coating process. Ceram. Int. 2019, 45, 9025–9031. [Google Scholar] [CrossRef]
- Sainz, M.A.; Pena, P.; Serena, S.A. Caballero, Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomater. 2010, 6, 2797–2807. [Google Scholar] [CrossRef] [PubMed]
- Ba, Z.; Chen, Z.; Huang, Y.; Feng, D.; Zhao, Q.; Zhu, J.; Wu, D. Nanoporous diopside modulates biocompatibility, degradability and osteogenesis of bioactive scaffolds of gliadin-based composites for new bone formation. Int. J. Nanomed. 2018, 13, 3883–3896. [Google Scholar] [CrossRef] [Green Version]
- De Aza, P.N.; Luklinska, Z.B.; Anseau, M. Bioactivity of diopside ceramic in human parotid saliva. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 73, 54–60. [Google Scholar] [CrossRef]
- Zhai, W.; Lu, H.; Wu, C.; Chen, L.; Lin, X.; Naoki, K.; Chen, G.; Chang, J. Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 2013, 9, 8004–8014. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chang, J. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2007, 83, 153–160. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, M.; Yao, D.; Chen, X.; Pu, X.; Liao, X.; Huang, Z.; Yin, G. Dissolution behavior of CaO-MgO-SiO2-based bioceramic powders in simulated physiological environments. Ceram. Int. 2017, 43, 9583–9592. [Google Scholar] [CrossRef]
- Salman, S.M.; Salama, S.N.; Darwish, H.; Abo-Mosallam, H.A. In vitro bioactivity of glass–ceramics of the CaMgSi2O6–CaSiO3–Ca5(PO4)3F–Na2SiO3 system with TiO2 or ZnO additives. Ceram. Int. 2009, 35, 1083–1093. [Google Scholar] [CrossRef]
- Brunello, G.; Elsayed, H.; Biasetto, L. Bioactive glass and silicate-based ceramic coatings on metallic implants: Open challenge or outdated topic. Materials 2019, 12, 2929. [Google Scholar] [CrossRef] [Green Version]
- Marzban, K.; Rabiee, S.M.; Zabihi, E.; Bagherifard, S. Nanostructured akermanite glass-ceramic coating on Ti6Al4V for orthopedic applications. J. Appl. Biomater. Funct. Mater. 2018, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Pu, X.; Chen, X.; Yin, G. In-vivo performance of plasma-sprayed CaO–MgO–SiO2-based bioactive glass-ceramic coating on Ti–6Al–4V alloy for bone regeneration. Heliyon 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Ni, S.; Chang, J.; Chou, L.; Zhai, W. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. Inc. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 80, 174–183. [Google Scholar] [CrossRef]
- Razavi, M.; Fathi, M.; Savabi, O.; Razavi, S.M.; Beni, B.H.; Vashaee, D.; Tayebi, L. Surface modification of magnesium alloy implants by nanostructured bredigite coating. Mater. Lett. 2013, 113, 174–178. [Google Scholar] [CrossRef]
- Razavi, M.; Fathi, M.; Savabi, O.; Vashaee, D.; Tayebi, L. In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite. J. Mater. Sci. Mater. Med. 2015, 26, 184. [Google Scholar] [CrossRef]
- Razavi, M.; Fathi, M.; Savabi, O.; Beni, B.H.; Vashaee, D.; Tayebi, L. Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical application. Colloids Surf. B Biointerfaces 2014, 117. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Akbari, M.; Ismail, A.F.; Aziz, M.; Hadisi, Z.; Pagan, E.; Daroonparvar, M.X. Chen, Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-åkermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surf. Coat. Techn. 2019, 377, 124898. [Google Scholar] [CrossRef]
- Karbowniczek, J.; Muhaffel, F.; Cempura, G.; Cimenoglu, H.; Czyrska-Filemonowicz, A. Influence of electrolyte composition on microstructure, adhesion and bioactivity of micro-arc oxidation coatings produced on biomedical Ti6Al7Nb alloy. Surf. Coat. Techn. 2017, 321, 97–107. [Google Scholar] [CrossRef]
- Simchen, F.; Sieber, M.; Kopp, A.; Lampke, T. Introduction to plasma electrolytic oxidation—An overview of the process and applications. Coatings 2020, 10, 628. [Google Scholar] [CrossRef]
- Peng, F.; Wang, D.; Tian, Y.; Cao, H.; Qiao, Y.; Liu, X. Sealing the pores of PEO coating with Mg-Al layered double hydroxide: Enhanced corrosion resistance, cytocompatibility and drug delivery ability. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Yang, Z.; Hu, X.; Song, R. Bioceramic coating produced on AZ80 magnesium alloy by one-step microarc oxidation process. J. Mater. Eng. Perform. 2019, 28, 1719–1727. [Google Scholar] [CrossRef]
- Zhang, P.; Zuo, Y. Relationship between porosity, pore parameters and properties of microarc oxidation film on AZ91D magnesium alloy. Results Physics. 2019, 12, 2044–2054. [Google Scholar] [CrossRef]
- Kurze, P.; Krysmann, W.; Schreckenbach, J.; Schwarz, T.; Rabending, K. Coloured ANOF Layers on Aluminium. Cryst. Re. Technol. 1987, 22, 53–58. [Google Scholar] [CrossRef]
- Bragg, W.L.; Claringbull, G.F. Crystal Structure of Minerals; Cornell University Press: Ithaca, NY, USA, 1965; Volume 4. [Google Scholar]
- ASTM G59–97. Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Shi, Z.; Atrens, A. An innovative specimen configuration for the study of Mg corrosion. Corros. Sci. 2011, 53, 226–246. [Google Scholar] [CrossRef]
- Osborn, E.F.; Muan, A.; Levin, E.M.; Robbins, C.R.; McMurdie, H.F. Phase Diagrams for Ceramists. J. Am. Ceram. Soc. 1964, 598. [Google Scholar]
- Mortazavi, G.; Jiang, J.; Meletis, E.I. Investigation of the plasma electrolytic oxidation mechanism of titanium. Appl. Surf. Sci. 2019, 488, 370–382. [Google Scholar] [CrossRef]
- Guo, H.; An, M.; Xu, S.; Huo, H. Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy. Thin Solid Films 2005, 485, 53–58. [Google Scholar] [CrossRef]
- Nechaev, G.G.; Popova, S.S. Dynamic model of single discharge during microarc oxidation. Teor. Osn. Khimicheskoi Tekhnologii 2015, 49, 467–472. [Google Scholar] [CrossRef]
- Ladd, M.; Palmer, R. Structure Determination by X-Ray Crystallography. Analysis by X-Rays and Neutrons; Springer: New York, NY, USA, 2013; p. 784. [Google Scholar] [CrossRef]
- Rietveld, H.M. Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinement. Acta Crystallogr. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Khan, R.H.U.; Yerokhin, A.L.; Li, X.; Dong, H.; Matthews, A. Influence of current density and electrolyte concentration on DC PEO titania coatings. Surf. Eng. 2014, 30, 102–108. [Google Scholar] [CrossRef]
- Choudhary, R.; Vecstaudza, J.; Krishnamurithy, G.; Raghavendran, H.R.B.; Murali, M.R.; Kamarul, T.; Swamiappan, S.; Locs, J. In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method. Mat. Sci. Eng. C 2016, 68, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Plyusnina, I.I. Infrared Spectra of Silicates; Moscow University Press: Moscow, Russia, 1967; p. 188. [Google Scholar]
- Sedelnikova, M.B.; Komarova, E.G.; Sharkeev, Y.P.; Tolkacheva, T.V.; Sheikin, V.V.; Egorkin, V.S.; Mashtalyar, D.V.; Kazakbaeva, A.A.; Schmidt, J. Characterization of the Micro-Arc Coatings Containing β-Tricalcium Phosphate Particles on Mg-0.8Ca Alloy. Metals 2018, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Curioni, M.; Salamone, L.; Scenini, F.; Santamaria, M.; Di Natale, M. A mathematical description accounting for the superfluous hydrogen evolution and the inductive behaviour observed during electrochemical measurements on magnesium. Electrochim. Acta 2018, 274, 343–352. [Google Scholar] [CrossRef]
- Mu, L.; Ma, Z.; Wang, J.; Yuan, S.; Li, M. Corrosion behavior and biological activity of micro arc oxidation coatings with berberine on a pure magnesium surface. Coatings 2020, 10, 837. [Google Scholar] [CrossRef]
- Darband, G.B.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloys 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Liu, Q.; Cen, L.; Yin, S.; Chen, L.; Liu, G.; Chang, J.; Cui, L. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials 2008, 29, 4792–4799. [Google Scholar] [CrossRef] [PubMed]
Elements | Content of Elements (at. %) | |||||||
---|---|---|---|---|---|---|---|---|
On the Surface | In the Cross-Section | |||||||
350 V | 400 V | 450 V | 500 V | 350 V | 400 V | 450 V | 500 V | |
O | 63.8 | 64.1 | 63.3 | 62.1 | 60.3 | 60.0 | 61.0 | 60.2 |
Mg | 9.5 | 7.9 | 6.3 | 4.1 | 26.4 | 24.0 | 21.3 | 19.1 |
Si | 17.8 | 17.2 | 17.5 | 16.9 | 7.5 | 9.3 | 10.0 | 11.8 |
Ca | 6.3 | 7.8 | 9.9 | 13.6 | 2.5 | 3.2 | 3.8 | 4.9 |
Na | 2.1 | 2.3 | 2.2 | 2.5 | 1.8 | 1.9 | 2.1 | 2.3 |
F | 0.5 | 0.7 | 0.8 | 0.8 | 1.5 | 1.6 | 1.8 | 1.7 |
Sample | Applied Voltage, V | Ec, V (vs. Ag/AgCl) | Jc, A cm−2 | Rp, Ω cm2 | Z|f→0 Hz, Ω cm2 |
---|---|---|---|---|---|
Mg0.8Ca | - | −1.33 | 7.3 × 10−6 | 4.2 × 103 | 2.1 × 102 |
1 | 350 | −1.45 | 4.7 × 10−7 | 5.1 × 104 | 1.3 × 104 |
2 | 400 | −1.42 | 5.2 × 10−7 | 4.3 × 104 | 3.9 × 104 |
3 | 500 | −1.41 | 1.9 × 10−7 | 1.3 × 105 | 6.8 × 104 |
Sample | CPE1 | R1 (Ω cm2) | CPE2 | R2 (Ω cm2) | RL (Ω cm2) | L (H cm2) | ||
---|---|---|---|---|---|---|---|---|
Q1 (S cm−2 sn) | n | Q2 (S cm−2 sn) | n | |||||
Bare Mg0.8Ca | 1.1 × 10−4 | 0.91 | 217.1 | - | - | - | 78.0 | 555.2 |
350 V | 5.1 × 10−6 | 0.78 | 1.7 × 104 | 4.1 × 10−5 | 0.48 | 1.3 × 103 | 3.8 × 104 | 524.7 |
400 V | 3.4 × 10−6 | 0.79 | 2.2 × 104 | 2.1 × 10−5 | 0.57 | 5.6 × 104 | 7.9 × 104 | 4372.0 |
500 V | 1.8 × 10−6 | 0.80 | 3.6 × 104 | 5.3 × 10−6 | 0.68 | 8.4 × 104 | 1.7 × 105 | 5423.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedelnikova, M.B.; Ugodchikova, A.V.; Tolkacheva, T.V.; Chebodaeva, V.V.; Cluklhov, I.A.; Khimich, M.A.; Bakina, O.V.; Lerner, M.I.; Egorkin, V.S.; Schmidt, J.; et al. Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance. Metals 2021, 11, 754. https://doi.org/10.3390/met11050754
Sedelnikova MB, Ugodchikova AV, Tolkacheva TV, Chebodaeva VV, Cluklhov IA, Khimich MA, Bakina OV, Lerner MI, Egorkin VS, Schmidt J, et al. Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance. Metals. 2021; 11(5):754. https://doi.org/10.3390/met11050754
Chicago/Turabian StyleSedelnikova, Mariya B., Anna V. Ugodchikova, Tatiana V. Tolkacheva, Valentina V. Chebodaeva, Ivan A. Cluklhov, Margarita A. Khimich, Olga V. Bakina, Marat I. Lerner, Vladimir S. Egorkin, Juergen Schmidt, and et al. 2021. "Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance" Metals 11, no. 5: 754. https://doi.org/10.3390/met11050754
APA StyleSedelnikova, M. B., Ugodchikova, A. V., Tolkacheva, T. V., Chebodaeva, V. V., Cluklhov, I. A., Khimich, M. A., Bakina, O. V., Lerner, M. I., Egorkin, V. S., Schmidt, J., & Sharkeev, Y. P. (2021). Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance. Metals, 11(5), 754. https://doi.org/10.3390/met11050754