Gear Root Bending Strength: A New Multiaxial Approach to Translate the Results of Single Tooth Bending Fatigue Tests to Meshing Gears
Abstract
:1. Introduction
2. Background
2.1. Causes of Different Stress States in STBF and RG Tests
2.2. Multiaxial Fatigue Criteria in Nonproportional Loading Conditions
3. Materials and Methods
3.1. Description of the General Framework
3.2. Finite Element Analysis
3.3. Implementation of the Findley Criterion for the Calculation of fkorr
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
TBF | Tooth Bending Fatigue |
TBS | Tooth Bending Strength |
STBF | Single Tooth Bending Fatigue |
RG | Running Gears |
FE | Finite Element |
Normal module | |
Normal pressure angle | |
Number of teeth | |
Face width | |
Profile shift coefficient | |
Dedendum coefficient | |
Root radius factor | |
Addendum coefficient | |
Wildhaber | |
Relative angle between the force and the loaded tooth axis | |
Load ratio | |
Outer Point of Single pair tooth Contact | |
Minimum Circumscribed Circle | |
Maximum tensile stress | |
Permissible bending stress | |
Material strength | |
Material strength calculated through Single Tooth Bending Fatigue tests | |
Material strength calculated through Running Gear tests | |
Correction coefficient | |
Stress tensor history | |
Stress exerting on a plane defined by a normal vector n | |
Spherical coordinates of the plane defined by a normal vector n | |
Stress component normal to the plane defined by a normal vector n | |
Stress component tangential to the plane defined by a normal vector n | |
along the time | |
Alternating tangential stress on the plane defined by a normal vector n | |
Average tangential stress on the plane defined by a normal vector n | |
Maximum stress component normal to the critical plane | |
Alternating tangential stress on the critical plane | |
Material constant related to the different response to bending and torsion | |
Constant related to the fatigue limits of the material | |
Material fatigue limit at symmetrical alternating bending loading | |
Material fatigue limit at symmetrical alternating torsional loading | |
Equivalent stress | |
Percentage variation of the equivalent stress |
References
- Vullo, V. Gears; Springer International Publishing: Rome, Italy, 2020. [Google Scholar]
- Radzevich, S.P.; Dudley, D.W. Handbook of Practical Gear Design; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Yadav, A. Different types Failure in gears—A Review. IJSETR 2012, 5, 82–92. [Google Scholar]
- Fernandes, P.J.L.; McDuling, C. Surface contact fatigue failures in gears. Eng. Fail. Anal. 1997, 4, 99–107. [Google Scholar] [CrossRef]
- Li, S.; Kahraman, A. A scuffing model for spur gear contacts. Mech. Mach. Theory 2021, 156, 104161. [Google Scholar] [CrossRef]
- Wu, S.; Cheng, H.S. Sliding wear calculation in spur gears. J. Tribol. 1993, 115, 493–500. [Google Scholar] [CrossRef]
- Blake, J.W.; Cheng, H.S. A surface pitting life model for spur gears: Part I—Life prediction. J. Tribol. 1991, 113, 712–718. [Google Scholar] [CrossRef]
- Liu, H.; Liu, H.; Zhu, C.; Zhou, Y. A review on micropitting studies of steel gears. Coatings 2019, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.J.L. Tooth bending fatigue failures in gears. Eng. Fail. Anal. 1996, 3, 219–225. [Google Scholar] [CrossRef]
- Davoli, P.; Conrado, E.; Michaelis, K. Recognizing gear failures. Machine Design. 2007, 63, 64–67. [Google Scholar]
- Bretl, N.; Schurer, S.; Tobie, T.; Stahl, K.; Höhn, B.R. Investigations on tooth root bending strength of case hardened gears in the range of high cycle fatigue. In Proceedings of the American Gear Manufacturers Association Fall Technical Meeting, Indianapolis, IN, USA, 15–17 September 2013; pp. 103–118. [Google Scholar]
- Pantazopoulos, G.A. Bending fatigue failure of a helical pinion bevel gear. J. Fail. Anal. Prev. 2015, 15, 219–226. [Google Scholar] [CrossRef]
- ISO 6336-1:2006. Calculation of Load Capacity of Spur and Helical Gears, Part 1: Basic Principles, Introduction and General Influence Factors; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Hong, I.J.; Kahraman, A.; Anderson, N. A rotating gear test methodology for evaluation of high-cycle tooth bending fatigue lives under fully reversed and fully released loading conditions. Int. J. Fatigue. 2020, 133, 105432. [Google Scholar] [CrossRef]
- ISO 6336-3:2006. Calculation of Load Capacity of Spur and Helical Gears, Part 3: Calculation of Tooth Bending Strength; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ANSI/AGMA 2001-D04. Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth; American Gear Manufacturers Association: Alexandria, VA, USA, 2006. [Google Scholar]
- ISO 6336-5:2016. Calculation of Load Capacity of Spur and Helical Gears, Part 5: Strength and Quality of Materials; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Rao, S.B.; McPherson, D.R. Experimental characterization of bending fatigue strength in gear teeth. Gear Technol. 2003, 20, 25–32. [Google Scholar]
- McPherson, D.R.; Rao, S.B. Methodology for translating single-tooth bending fatigue data to be comparable to running gear data. Gear Technol. 2008, 1, 42–51. [Google Scholar]
- Benedetti, M.; Fontanari, V.; Höhn, B.R.; Oster, P.; Tobie, T. Influence of shot peening on bending tooth fatigue limit of case hardened gears. Int. J. Fatigue 2002, 24, 1127–1136. [Google Scholar] [CrossRef]
- Dobler, D.I.A.; Hergesell, I.M.; Stahl, I.K. Increased Tooth Bending Strength and Pitting Load Capacity of Fine-Module Gears. Gear Technol. 2016, 33, 48–53. [Google Scholar]
- Medlin, D.J.; Cornelissen, B.E.; Matlock, D.K.; Krauss, G.; Filar, R.J. Effect of thermal treatments and carbon potential on bending fatigue performance of SAE 4320 gear steel. SAE Trans. 1999, 547–556. Available online: https://www.jstor.org/stable/44650652 (accessed on 20 May 2021).
- Spice, J.J.; Matlock, D.K.; Fett, G. Optimized carburized steel fatigue performance as assessed with gear and modified brugger fatigue tests. SAE Trans. 2002, 111, 589–597. [Google Scholar]
- Costa, L.V.; de Oliveira, D.C.; Wallace, D.; Lelong, V.; Findley, K.O. Bending Fatigue in Low-Pressure Carbonitriding of Steel Alloys with Boron and Niobium Additions. J. Mater. Eng. Perform. 2020, 29, 3593–3602. [Google Scholar] [CrossRef]
- McPherson, D.R.; Rao, S.B. Mechanical Testing of Gears; ASM International: Materials Park, OH, USA, 2000; pp. 861–872. [Google Scholar]
- Gorla, C.; Conrado, E.; Rosa, F.; Concli, F. Contact and bending fatigue behaviour of austempered ductile iron gears. J. Mech. Eng. Sci. 2018, 232, 998–1008. [Google Scholar] [CrossRef]
- Meneghetti, G.; Dengo, C.; Lo Conte, F. Bending fatigue design of case-hardened gears based on test specimens. J. Mech. Eng. Sci. 2018, 232, 1953–1969. [Google Scholar] [CrossRef]
- Rettig, H. Ermittlung von Zahnfußfestigkeitskennwerten auf Verspannungsprüfständen und Pulsatoren-Vergleich der Prüfverfahren und der gewonnenen Kennwerte. Antriebstechnik 1987, 26, 51–55. [Google Scholar]
- Stahl, K. Lebensdauer Statistik: Abschlussbericht, Forschungsvorhaben nr. 304. Available online: https://www.tib.eu/de/suchen/id/TIBKAT%3A380714671/Statistische-Methoden-zur-Beurteilung-von-Bauteillebensdauer/ (accessed on 22 April 2021).
- Fontanari, V.; Molinari, A.; Marini, M.; Pahl, W.; Benedetti, M. Tooth Root Bending Fatigue Strength of High-Density Sintered Small-Module Spur Gears: The Effect of Porosity and Microstructure. Metals 2019, 9, 599. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, M.; Menapace, C. Tooth root bending fatigue strength of small-module sinter-hardened spur gears. Powder Metall. 2017, 60, 149–156. [Google Scholar] [CrossRef]
- Winkler, K.J.; Schurer, S.; Tobie, T.; Stahl, K. Investigations on the tooth root bending strength and the fatigue fracture characteristics of case-carburized and shot-peened gears of different sizes. Proc. Inst. Mech. Eng. Part. C J. Mech. Eng. Sci. 2019, 233, 7338–7349. [Google Scholar] [CrossRef]
- Argoud, V.; Morel, F.; Pessard, E.; Bellett, D.; Thibault, S.; Gourdin, S. Fatigue behaviour of gear teeth made of case hardened steel: From competing mechanisms to lifetime variability. Procedia Struct. Integrity 2019, 19, 719–728. [Google Scholar] [CrossRef]
- Townsend, D.P.; Baber, B.B.; Nagy, A. Evaluation of High-Contact-Ratio Spur Gears with Profile Modification; National Aeronautics and Space Administration, Scientific and Technical Information Branch: Washington, DC, USA, 1979; pp. 1–21. [Google Scholar]
- Eyercioglu, O.; Walton, D.; Dean, T.A. Comparative bending fatigue strength of precision forged spur gears. J. Mech. Eng. Sci. 1997, 211, 293–299. [Google Scholar] [CrossRef]
- Handschuh, R.F.; Krantz, T.L.; Lerch, B.A.; Burke, C.S. Investigation of low-cycle bending fatigue of AISI 9310 steel spur gears. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, NV, USA, 4–7 September 2007; pp. 871–877. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, G.; Mariani, U.; Gorla, C.; Filippini, M.; Rosa, F. Bending Fatigue Tests of Helicopter Case Carburized Gears: Influence of Material, Design and Manufacturing Parameters. In Proceedings of the American Gear Manufacturers Association (AGMA) Fall Technical Meeting, San Antonio, TX, USA, 12–14 October 2008; pp. 68–76. [Google Scholar]
- Vučković, K.; Galić, I.; Božić, Ž.; Glodež, S. Effect of friction in a single-tooth fatigue test. Int. J. Fatigue 2018, 114, 148–158. [Google Scholar] [CrossRef]
- Daniewicz, S.R.; Moore, D.H. Increasing the bending fatigue resistance of spur gear teeth using a presetting process. Int. J. Fatigue 1998, 20, 537–542. [Google Scholar] [CrossRef]
- Bian, X.X.; Zhou, G.; Liwei; Tan, J.Z. Investigation of bending fatigue strength limit of alloy steel gear teeth. J. Mech. Eng. Sci. 2012, 226, 615–625. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Xu, Z.Z.; Shin, G.S.; Lyu, S. A study on the evaluation of bending fatigue strength for 20CrMoH gear. IJPEM 2013, 14, 1339–1343. [Google Scholar] [CrossRef]
- Conrado, E.; Gorla, C.; Davoli, P.; Boniardi, M. A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications. Eng. Fail. Anal. 2017, 78, 41–54. [Google Scholar] [CrossRef]
- Vukic, M.; Čular, I.; Mašović, R.; Vučković, K. Effect of friction on nominal stress results in a single tooth bending fatigue test. IOP Conf. Ser. Mater. Sci. Eng. 2019, 659, 012004. [Google Scholar] [CrossRef] [Green Version]
- Bonaiti, L.; Concli, F.; Gorla, C.; Rosa, F. Bending fatigue behaviour of 17-4 PH gears produced via selective laser melting. Procedia Struct. Integrity 2019, 24, 764–774. [Google Scholar] [CrossRef]
- Concli, F. Austempered Ductile Iron (ADI) for gears: Contact and bending fatigue behavior. Procedia Struct. Integrity. 2018, 8, 14–23. [Google Scholar] [CrossRef]
- Dobler, F.; Tobie, T.; Stahl, K. Influence of low temperatures on material properties and tooth root bending strength of case-hardened gears. In Proceedings of the the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015. [Google Scholar] [CrossRef]
- Gorla, C.; Rosa, F.; Concli, F.; Albertini, H. Bending fatigue strength of innovative gear materials for wind turbines gearboxes: Effect of surface coatings. In Proceedings of the the ASME International Mechanical Engineering Congress and Exposition; 2012; pp. 3141–3147. [Google Scholar] [CrossRef]
- Gorla, C.; Rosa, F.; Conrado, E.; Albertini, H. Bending and contact fatigue strength of innovative steels for large gears. J. Mech. Eng. Sci. 2014, 228, 2469–2482. [Google Scholar] [CrossRef] [Green Version]
- Gorla, C.; Rosa, F.; Conrado, E.; Concli, F. Bending fatigue strength of case carburized and nitrided gear steels for aeronautical applications. Int. J. Appl. Eng. Res. 2017, 12, 11306–11322. [Google Scholar]
- Rao, S.B.; Schwanger, V.; McPherson, D.R.; Rudd, C. Measurement and Validation of Dynamic Bending Stresses in Spur Gear Teeth. In Proceedings of the the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, USA, 24–28 September 2005; pp. 755–764. [Google Scholar] [CrossRef]
- Wagner, M.; Isaacson, A.; Knox, K.; Hylton, T. Single Tooth Bending Fatigue Testing at Any R Ratio. In Proceedings of the 2020 AGMA/ABMA Annual Meeting, Buena Vista, FL, USA, 19–21 March 2020; AGMA American Gear Manufacturers Association: Lake Buena Vista, FL, USA, 2020. [Google Scholar]
- Podrug, S.; Jelaska, D.; Glodež, S. Influence of different load models on gear crack path shapes and fatigue lives. FFEMS 2008, 31, 327–339. [Google Scholar] [CrossRef]
- Gough, H.J.; Pollard, H.V. The strength of metals under combined alternating stresses. Proc. Inst. Mech. Eng. 1935, 131, 3–103. [Google Scholar] [CrossRef]
- Crossland, B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. Proc. Int. Conf. Fatigue Metals 1956, 138, 12. [Google Scholar]
- Sines, G. Behaviour of metals under complex static and alternating stresses. Metal Fatigue 1959, 1, 145–169. [Google Scholar]
- Findley, W.N. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. J. Ind. Eng. Int. 1959, 81, 301–305. [Google Scholar] [CrossRef]
- Matake, T. An explanation on fatigue limit under combined stress. Bulletin JSME. 1977, 20, 257–263. [Google Scholar] [CrossRef]
- Macha, E. Mathematical models of the life to fracture for materials subject to random complex stress systems. Sci. Papers Inst. Mater. Sci. Appl. Mech. Wroclaw Tech. Univ. 1979, 41, 99. [Google Scholar]
- McDiarmid, D.L. Fatigue under out-of-phase biaxial stresses of different frequencies. In Multiaxial Fatigue; Miller, K., Brown, M., Eds.; ASTM International: West Conshohocken, PA, USA, 1985. [Google Scholar] [CrossRef]
- Dang-Van, K. Macro-Micro Approach in High-Cycle Multiaxial Fatigue. In Advances in Multiaxial Fatigue; McDowell, D., Ellis, J., Eds.; ASTM International: West Conshohocken, PA, USA, 1993. [Google Scholar]
- Fatemi, A.; Kurath, P. Multiaxial fatigue life predictions under the influence of mean-stresses. J. Eng. Mater. Technol. 1988, 110, 380–388. [Google Scholar] [CrossRef]
- Papadopoulos, I.V. A high-cycle fatigue criterion applied in biaxial and triaxial out-of-phase stress conditions. FFEMS. 1995, 18, 79–91. [Google Scholar] [CrossRef]
- Macha, E.; Sonsino, C.M. Energy criteria of multiaxial fatigue failure. Fatigue Eng. Mater. Struct. 1999, 22, 1053–1070. [Google Scholar] [CrossRef]
- Łagoda, T.; Macha, E.; Będkowski, W. A critical plane approach based on energy concepts: Application to biaxial random tension-compression high-cycle fatigue regime. Int. J. Fatigue 1999, 21, 431–443. [Google Scholar] [CrossRef]
- Carpinteri, A.; Spagnoli, A.; Vantadori, A. A multiaxial fatigue criterion for random loading. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 515–522. [Google Scholar] [CrossRef]
- Karolczuk, A.; Macha, E. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int. J. Fract. 2005, 134, 267. [Google Scholar] [CrossRef]
- Liu, Y.; Mahadevan, S. Multiaxial high-cycle fatigue criterion and life prediction for metals. Int. J. Fatigue 2005, 27, 790–800. [Google Scholar] [CrossRef]
- Łagoda, T.; Ogonowski, P. Criteria of multiaxial random fatigue based on stress, strain and energy parameters of damage in the critical plane. Materialwissenschaft Werkstofftechnik: Entwicklung Fertigung Prüfung Eigenschaften Anwendungen technischer Werkstoffe 2005, 36, 429–437. [Google Scholar] [CrossRef]
- Liu, Y.; Mahadevan, S. A unified multiaxial fatigue damage model for isotropic and anisotropic materials. Int. J. Fatigue 2007, 29, 347–359. [Google Scholar] [CrossRef]
- Ninic, D.; Stark, H.L. A multiaxial fatigue damage function. Int. J. Fatigue 2007, 29, 533–548. [Google Scholar] [CrossRef]
- Chamat, A.; Abbadi, M.; Gilgert, J.; Cocheteux, F.; Azari, Z. A new non-local criterion in high-cycle multiaxial fatigue for non-proportional loadings. Int. J. Fatigue 2007, 29, 1465–1474. [Google Scholar] [CrossRef]
- Shariyat, M. A fatigue model developed by modification of Gough’s theory, for random non-proportional loading conditions and three-dimensional stress fields. Int. J. Fatigue 2008, 30, 1248–1258. [Google Scholar] [CrossRef]
- Hotai, M.A.; Kahraman, A. Estimation of bending fatigue life of hypoid gears using a multiaxial fatigue criterion. J. Mech. Des. 2013, 135. [Google Scholar] [CrossRef]
- Savaria, V.; Bridier, F.; Bocher, P. Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears. Int. J. Fatigue 2016, 85, 70–84. [Google Scholar] [CrossRef]
- Bonaiti, L.; Bayoumi, A.B.M.; Concli, F.; Rosa, F.; Gorla, C. Gear root bending strength: A comparison between Single Tooth Bending Fatigue Tests and meshing gears. J. Mech. Des. 2021, 143, 103402. [Google Scholar] [CrossRef]
- Susmel, L. On the overall accuracy of the Modified Wöhler Curve Method in estimating high-cycle multiaxial fatigue strength. Frat. Integrita Strutt. 2011, 5, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Concli, F. Tooth Root Bending Strength of Gears: Dimensional Effect for Small Gears Having a Module below 5 mm. Appl. Sci. 2021, 11, 2416. [Google Scholar] [CrossRef]
- Papadopoulos, I.V. Critical plane approaches in high-cycle fatigue: On the definition of the amplitude and mean value of the shear stress acting on the critical plane. Fatigue Frac. Eng. Mater. Struct. 1998, 21, 269–285. [Google Scholar] [CrossRef]
Relevant Papers Presenting STBF Tests | |
---|---|
[21,30] | |
[31,32] | |
[33] | |
[27,34,35,36,37,38] | |
[34,39,40,41,42,43] | |
[20,26,32,44,45,46] | |
[32,47,48] |
Geometrical Parameters | Sym | Gears | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | ||
Normal module [mm] | 0.45 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 8 | |
Normal pressure angle [°] | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |
Number of teeth | 29 | 19 | 26 | 24 | 23 | 28 | 24 | 24 | 32 | |
Face width [mm] | 6.75 | 10.3 | 10 | 15 | 30 | 30 | 10 | 30 | 20 | |
Profile shift coefficient | 0.45 | 0 | 0.3 | 0 | 0.442 | 0 | −0.2 | 0 | 0.223 | |
Dedendum coefficient | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | |
Root radius factor | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | |
Addendum coefficient | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Wildhaber | 4 | 4 | 5 | 5 | 4 | 4 | 3 | 3 | 4 | |
Angle STBF [°] | 19 | 28 | 27.7 | 22 | 23 | 19 | 15 | 15 | 17 | |
Reference | [21] | [31] | [77] | [35] | [27] | [42] | [44] | [20] | [48] |
Material | |||
---|---|---|---|
42CrMo4 | 525.7 | 336.3 | 0.29 |
20MnCr5 | 410.0 | 258.0 | 0.27 |
34Cr4 | 410.0 | 256.0 | 0.26 |
30NCD16 | 690.0 | 428.0 | 0.25 |
C35N | 250.0 | 150.0 | 0.20 |
Gear | |||
---|---|---|---|
A | 394 | 402 | 2.0% |
B | 475 | 430 | −9.5% |
C | 380 | 402 | 5.8% |
D | 471 | 436 | −7.4% |
E | 332 | 360 | 8.4% |
F | 428 | 399 | −6.8% |
G | 522 | 483 | −7.5% |
H | 408 | 408 | 0.0% |
I | 409 | 420 | 2.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concli, F.; Fraccaroli, L.; Maccioni, L. Gear Root Bending Strength: A New Multiaxial Approach to Translate the Results of Single Tooth Bending Fatigue Tests to Meshing Gears. Metals 2021, 11, 863. https://doi.org/10.3390/met11060863
Concli F, Fraccaroli L, Maccioni L. Gear Root Bending Strength: A New Multiaxial Approach to Translate the Results of Single Tooth Bending Fatigue Tests to Meshing Gears. Metals. 2021; 11(6):863. https://doi.org/10.3390/met11060863
Chicago/Turabian StyleConcli, Franco, Lorenzo Fraccaroli, and Lorenzo Maccioni. 2021. "Gear Root Bending Strength: A New Multiaxial Approach to Translate the Results of Single Tooth Bending Fatigue Tests to Meshing Gears" Metals 11, no. 6: 863. https://doi.org/10.3390/met11060863
APA StyleConcli, F., Fraccaroli, L., & Maccioni, L. (2021). Gear Root Bending Strength: A New Multiaxial Approach to Translate the Results of Single Tooth Bending Fatigue Tests to Meshing Gears. Metals, 11(6), 863. https://doi.org/10.3390/met11060863