Numerical Modelling in Steel Metallurgy
1. Introduction and Scope
2. Contributions
3. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Li, N.; Wang, F. Numerical analysis of radiative heat transfer and direct reduction of three-dimensional multilayer ellipsoidal carbon-containing pellet unit in the rotary hearth furnace. Metals 2020, 10, 994. [Google Scholar] [CrossRef]
- Deng, N.; Zhou, X.; Zhou, M.; Peng, S. Numerical simulation of the melting behavior of steel scrap in hot metal. Metals 2020, 10, 678. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Wang, M.; Song, L.; Bao, Y.-P. Splashing simulation of liquid steel drops during the ruhrstahl heraeus vacuum process. Metals 2020, 10, 1070. [Google Scholar] [CrossRef]
- Tkadlečková, M.; Walek, J.; Michalek, K.; Huczala, T. Numerical analysis of RTD curves and inclusions removal in a multi-strand asymmetric tundish with different configuration of impact pad. Metals 2020, 10, 849. [Google Scholar] [CrossRef]
- Sheng, D.-Y.; Yue, Q. Modeling of fluid flow and residence-time distribution in a five-strand tundish. Metals 2020, 10, 1084. [Google Scholar] [CrossRef]
- Sheng, D.-Y. Mathematical modelling of multiphase flow and inclusion behavior in a single-strand tundish. Metals 2020, 10, 1213. [Google Scholar] [CrossRef]
- Sheng, D.-Y. Design optimization of a single-strand tundish based on CFD-taguchi-grey relational analysis combined method. Metals 2020, 10, 1539. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, J.; Yang, S.; Li, J. Measurement of surface velocity in a 150 mm × 1270 mm Slab continuous-casting mold. Metals 2020, 10, 428. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Wang, P.; Yi, B.; Chen, X.; Li, A.; Tang, H.; Li, W.; Zhang, J. A Numerical and experimental study on the solidification structure of Fe–Cr–Ni steel slab casting by roller electromagnetic stirring. Metals 2021, 11, 6. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Luo, M.; Li, B.; Lan, P.; Zhang, J. Control of shrinkage porosity and spot segregation in Ø195 mm continuously cast round bloom of oil pipe steel by soft reduction. Metals 2021, 11, 9. [Google Scholar] [CrossRef]
- Odehnal, J.; Ludvík, P.; Studecký, T.; Michálek, P. Development of universal mould geometry for the teeming of cylindrical iron-base alloy ingots. Metals 2021, 11, 471. [Google Scholar] [CrossRef]
- Jonšta, P.; Kurka, V.; Vindyš, M.; Kander, L. The effect of forging conditions on final macrostructure of Slab ingot from the 55NiCrMoV7 tool steel. Metals 2021, 11, 435. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkadlečková, M. Numerical Modelling in Steel Metallurgy. Metals 2021, 11, 885. https://doi.org/10.3390/met11060885
Tkadlečková M. Numerical Modelling in Steel Metallurgy. Metals. 2021; 11(6):885. https://doi.org/10.3390/met11060885
Chicago/Turabian StyleTkadlečková, Markéta. 2021. "Numerical Modelling in Steel Metallurgy" Metals 11, no. 6: 885. https://doi.org/10.3390/met11060885
APA StyleTkadlečková, M. (2021). Numerical Modelling in Steel Metallurgy. Metals, 11(6), 885. https://doi.org/10.3390/met11060885