Advantages of Electrochemical Polishing of Metals and Alloys in Ionic Liquids
Abstract
:1. Introduction
2. Electropolishing Mechanisms
3. Electropolishing of Metals and Alloys
3.1. Stainless Steel
3.2. Titanium and Alloys
3.3. Platinum
3.4. Copper
3.5. Aluminum
3.6. Uranium
3.7. Tin
3.8. Nickel
3.9. Silver
3.10. Niobium
3.11. Alloys
4. Conclusions
- A rather high cost of the chemicals used to prepare ionic liquids;
- The need to establish compliance with existing and planned environmental regulations;
- The processes are not optimized.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, W.; Fang, F. Fundamental Aspects and Recent Developments in Electropolishing. Int. J. Mach. Tools Manuf. 2019, 139, 1–23. [Google Scholar] [CrossRef]
- Abbott, A.P.; Frisch, G.; Hartley, J.; Karim, W.O.; Ryder, K.S. Anodic Dissolution of Metals in Ionic Liquids. Prog. Nat. Sci. Mater. Int. 2015, 25, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Wang, B.; Tawfiq, K.; Wei, H.; Zhou, S.; Chen, G. Electropolishing of Surfaces: Theory and Applications. Surf. Eng. 2017, 33, 149–166. [Google Scholar] [CrossRef]
- Landolt, D. Fundamental Aspects of Electropolishing. Electrochim. Acta 1987, 32, 1–11. [Google Scholar] [CrossRef]
- Datta, M.; Landolt, D. Fundamental Aspects and Applications of Electrochemical Microfabrication. Electrochim. Acta 2000, 45, 2535–2558. [Google Scholar] [CrossRef]
- Hensel, K.B. Electropolishing. Met. Finish. 2000, 98, 440–448. [Google Scholar] [CrossRef]
- Łyczkowska-Widłak, E.; Lochyński, P.; Nawrat, G. Electrochemical Polishing of Austenitic Stainless Steels. Materials 2020, 13, 2557. [Google Scholar] [CrossRef]
- Chemical and Electrolytic Polishing. Metallography and Microstructures; Vander Voort, G.F., Ed.; ASM International: Novelty, OH, USA, 2004; pp. 281–293. ISBN 978-1-62708-177-1. [Google Scholar]
- Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiago, G.A.O.; Matias, I.A.S.; Ribeiro, A.P.C.; Martins, L.M.D.R.S. Application of Ionic Liquids in Electrochemistry—Recent Advances. Molecules 2020, 25, 5812. [Google Scholar] [CrossRef] [PubMed]
- Van Ginneken, B.; Stavridi, M.; Koenderink, J.J. Diffuse and Specular Reflectance from Rough Surfaces. Appl. Opt. 1998, 37, 130–139. [Google Scholar] [CrossRef]
- Kerker, M. The Scattering of Light and Other Electromagnetic Radiation; Physical Chemistry; Academic Press: New York, NY, USA, 1969; ISBN 978-0-12-404550-7. [Google Scholar]
- Lugolole, R.; Obwoya, S.K. The Effect of Thickness of Aluminium Films on Optical Reflectance. J. Ceram. 2015, 2015, 213635. [Google Scholar] [CrossRef] [Green Version]
- Hass, G.; Scott, N.W. On the Structure and Properties of Some Metal and Metal Oxide Films. J. Phys. Radium 1950, 11, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Lebedeva, O.; Dzhungurova, G.; Zakharov, A.; Kultin, D.; Kustov, L.; Krasovskii, V.; Kalmykov, K.; Dunaev, S. Surface State of Sacrificial Copper Electrode by Electropolishing in Hydrophobic Ionic Liquid 1-Butyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide. ACS Appl. Mater. Interfaces 2013, 5, 10551–10558. [Google Scholar] [CrossRef]
- England, W.A.; Jenny, S.N.; Greenhalgh, D.A. Chromium Oxide Film Thickness Measurements Using Spontaneous Raman Scattering. J. Raman Spectrosc. 1984, 15, 156–159. [Google Scholar] [CrossRef]
- Mallikarjuna Reddy, A.; Sivasankar Reddy, A.; Sreedhara Reddy, P. Thickness Dependent Properties of Nickel Oxide Thin Films Deposited by Dc Reactive Magnetron Sputtering. Vacuum 2011, 85, 949–954. [Google Scholar] [CrossRef]
- Pouilleau, J.; Devilliers, D.; Garrido, F.; Durand-Vidal, S.; Mahé, E. Structure and Composition of Passive Titanium Oxide Films. Mater. Sci. Eng. B 1997, 47, 235–243. [Google Scholar] [CrossRef]
- Sittig, C.; Textor, M.; Spencer, N.D.; Wieland, M.; Vallotton, P.-H. Surface Characterization of Implant Materials Ti, Ti-6Al-7Nb and Ti-6Al-4V with Different Pretreatments. J. Mater. Sci. Mater. Med. 1999, 10, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, G.; Cerqumi, A.; Mazza, F.; Torchio, S. Chemical Etching and Pitting of Stainless Steel. Corros. Sci. 1970, 10, 19–27. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic Liquids Synthesis and Applications: An Overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Rogers, R.D. CHEMISTRY: Ionic Liquids—Solvents of the Future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Earle, M.J.; Seddon, K.R. Ionic Liquids. Green Solvents for the Future. Pure Appl. Chem. 2000, 72, 1391–1398. [Google Scholar] [CrossRef] [Green Version]
- Huo, J.; Solanki, R.; McAndrew, J. Electrochemical Polishing of Copper for Microelectronic Applications. Surf. Eng. 2003, 19, 11–16. [Google Scholar] [CrossRef]
- Jayakrishna, K.; Kar, V.R.; Sultan, M.T.H.; Rajesh, M. Materials selection for aerospace components. In Sustainable Composites for Aerospace Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–18. ISBN 978-0-08-102131-6. [Google Scholar]
- Artini, C. (Ed.) Alloys and Intermetallic Compounds: From Modeling to Engineering, 1st ed.; A Science Publishers Book; Taylor & Francis Group; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-15161-8. [Google Scholar]
- Lappin, D.; Mohammadi, A.R.; Takahata, K. An Experimental Study of Electrochemical Polishing for Micro-Electro-Discharge-Machined Stainless-Steel Stents. J. Mater. Sci. Mater. Med. 2012, 23, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, T.M.; Loftis, J.D.; Mahapatro, A. Nanoscale Surface Pretreatment of Biomedical Co-Cr Alloy. J. Surf. Interfaces Mater. 2015, 3, 67–74. [Google Scholar] [CrossRef]
- Williams, D.F. On the Mechanisms of Biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef]
- Larsson, C.; Thomsen, P.; Lausmaa, J.; Rodahl, M.; Kasemo, B.; Ericson, L.E. Bone Response to Surface Modified Titanium Implants: Studies on Electropolished Implants with Different Oxide Thicknesses and Morphology. Biomaterials 1994, 15, 1062–1074. [Google Scholar] [CrossRef]
- Raval, A.; Choubey, A.; Engineer, C.; Kothwala, D. Development and Assessment of 316LVM Cardiovascular Stents. Title Mater. Sci. Eng. A 2004, 386, 331–343. [Google Scholar] [CrossRef]
- Larsson, C.; Thomsen, P.; Aronsson, B.-O.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L.E. Bone Response to Surface-Modified Titanium Implants: Studies on the Early Tissue Response to Machined and Electropolished Implants with Different Oxide Thicknesses. Biomaterials 1996, 17, 605–616. [Google Scholar] [CrossRef]
- Kityk, A.; Protsenko, V.; Danilov, F.; Pavlik, V.; Hnatko, M.; Šoltýs, J. Enhancement of the Surface Characteristics of Ti-Based Biomedical Alloy by Electropolishing in Environmentally Friendly Deep Eutectic Solvent (Ethaline). Colloids Surf. A 2021, 613, 126125. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Swain, B.G.; Wheeler, D.A. Electropolishing of Stainless Steel in an Ionic Liquid. Trans. IMF 2005, 83, 51–53. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; McKenzie, K.J.; Ryder, K.S. Voltammetric and Impedance Studies of the Electropolishing of Type 316 Stainless Steel in a Choline Chloride Based Ionic Liquid. Electrochim. Acta 2006, 51, 4420–4425. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; McKenzie, K.J.; Glidle, A.; Ryder, K.S. Electropolishing of Stainless Steels in a Choline Chloride Based Ionic Liquid: An Electrochemical Study with Surface Characterisation Using SEM and Atomic Force Microscopy. Phys. Chem. Chem. Phys. 2006, 8, 4214–4221. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Fattah, T.M.; Loftis, J.D.; Mahapatro, A. Ionic Liquid Electropolishing of Metal Alloys for Biomedical Applications. ECS Trans. 2010, 25, 57–61. [Google Scholar] [CrossRef]
- Lebedeva, O.; Jungurova, G.; Kultin, D.; Kustov, L.; Zakharov, A.; Kalmikov, K.; Chernikova, E.; Krasovskiy, V. Ionic Liquids Based on the Imidazolium Cation in Platinum and Titanium Electropolishing. Green Chem. 2011, 13, 1004. [Google Scholar] [CrossRef]
- Liu, X.; Chu, P.; Ding, C. Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications. Mater. Sci. Eng. R Rep. 2004, 47, 49–121. [Google Scholar] [CrossRef] [Green Version]
- Uda, T.; Tsuchimoto, K.; Nakagawa, H.; Murase, K.; Nose, Y.; Awakura, Y. Electrochemical Polishing of Metallic Titanium in Ionic Liquid. Mater. Trans. 2011, 52, 2061–2066. [Google Scholar] [CrossRef] [Green Version]
- Bayagoob, A.Y.O. Nano Electrochemical Polishing of Titanium Alloy Using Ionic Liquid. Bachelor’s Thesis, Universiti Teknologi PETRONAS, Tronoh, Perak, 2015. [Google Scholar]
- Karim, W.O.; Juma, J.A.; Omer, K.M.; Salih, Y.M.; Hama Aziz, K.H.; Aziz, S.B. Electropolishing and Mirror-like Preparation of Titanium in Choline Chloride-Ethylene Glycol Mixture Liquid. Electrochemistry 2020, 88, 447–450. [Google Scholar] [CrossRef]
- Karim, W.O.; Juma, J.A.; Omer, K.M.; Ahmad, N.N.; Kader, D.A.; Tofiq, B.B.; Aziz, S.B. Novel Electropolishing of Pure Metallic Titanium in Choline Chloride-Based Various Organic Solvents. Electrochemistry 2021, 89, 67–70. [Google Scholar] [CrossRef]
- Bahtiar, M.A. Nano Polishing of Titanium Alloy with Ionic Liquid. Bachelor’s Thesis, Universiti Teknologi PETRONAS, Tronoh, Perak, 2016. [Google Scholar]
- Karim, W.O.; Aziz, S.B.; Brza, M.A.; Abdullah, R.M.; Kadir, M.F.Z. The Anodic Behaviour of Bulk Copper in Ethaline and 1-Butyl-3-Methylimidazolium Chloride. Appl. Sci. 2019, 9, 4401. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Fattah, T.M.; Loftis, J.D. Comparison of the Electrochemical Polishing of Copper and Aluminum in Acid and Acid-Free Media. ECS Trans. 2009, 25, 327–332. [Google Scholar] [CrossRef]
- Abdel-Fattah, T.M.; Loftis, D. Surface Characterization of High-Purity Copper Electropolishing and Electrodeposition Treatments in an Ionic Liquid. Meet. Abstr. 2020, MA2020-02, 2997. [Google Scholar] [CrossRef]
- Hou, Y.; Li, R.; Liang, J. Simultaneous Electropolishing and Electrodeposition of Aluminum in Ionic Liquid under Ambient Conditions. Appl. Surf. Sci. 2018, 434, 918–921. [Google Scholar] [CrossRef]
- Kityk, A.A.; Protsenko, V.S.; Danilov, F.I.; Kun, O.V.; Korniy, S.A. Electropolishing of Aluminium in a Deep Eutectic Solvent. Surf. Coat. Technol. 2019, 375, 143–149. [Google Scholar] [CrossRef]
- Hou, Y.; Li, R.; Liang, J.; Su, P.; Ju, P. Electropolishing of Al and Al Alloys in AlCl3 /Trimethylamine Hydrochloride Ionic Liquid. Surf. Coat. Technol. 2018, 335, 72–79. [Google Scholar] [CrossRef]
- Abdel-Fattah, T.M.; Loftis, J.D. Comparison of Electropolishing of Aluminum in a Deep Eutectic Medium and Acidic Electrolyte. Molecules 2020, 25, 5712. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, L.; Luo, L.; Wang, X. Fundamental Aspects of Uranium Electropolishing in AlCl3-1-ethyl-3-Methylimidazolium Chloride Ionic Liquid. J. Electrochem. Soc. 2018, 165, E70–E75. [Google Scholar] [CrossRef] [Green Version]
- Yuza, N.; Serizawa, N.; Katayama, Y. Electropolishing of Tin in an Amide-Type Ionic Liquid. J. Electrochem. Soc. 2021, 168, 036509. [Google Scholar] [CrossRef]
- Tachikawa, N.; Serizawa, N.; Katayama, Y.; Miura, T. Electrochemistry of Sn(II)/Sn in a Hydrophobic Room-Temperature Ionic Liquid. Electrochim. Acta 2008, 53, 6530–6534. [Google Scholar] [CrossRef]
- Serizawa, N.; Tachikawa, N.; Katayama, Y.; Miura, T. EQCM Measurement of Sn(II)/Sn Reaction in 1-Butyl-1-Methylpyrrolidinium Bis(Trifluoromethylsulfonyl)Amide Room-Temperature Ionic Liquid. Electrochemistry 2009, 77, 630–632. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Fattah, T.M.; Loftis, J.D. Surface Characterization of High Purity Metals of Silver and Nickel Electropolished with an Ionic Liquid. ECS Trans. 2010, 25, 57–61. [Google Scholar] [CrossRef]
- Karim, W.O.; Abbott, A.P.; Cihangir, S.; Ryder, K.S. Electropolishing of Nickel and Cobalt in Deep Eutectic Solvents. Trans. IMF 2018, 96, 200–205. [Google Scholar] [CrossRef]
- Goddard, A.J.; Harris, R.C.; Saleem, S.; Azam, M.; Hood, C.; Clark, D.; Satchwell, J.; Ryder, K.S. Electropolishing and Electrolytic Etching of Ni-Based HIP Consolidated Aerospace Forms: A Comparison between Deep Eutectic Solvents and Aqueous Electrolytes. Trans. IMF 2017, 95, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Shabalovskaya, S.A. Surface, Corrosion and Biocompatibility Aspects of Nitinol as an Implant Material. BioMed. Mater. Eng. 2002, 12, 69–109. [Google Scholar]
- Abbott, A.P.; Dsouza, N.; Withey, P.; Ryder, K.S. Electrolytic Processing of Superalloy Aerospace Castings Using Choline Chloride-Based Ionic Liquids. Trans. IMF 2012, 90, 9–14. [Google Scholar] [CrossRef]
- Mohammadian, N.; Turenne, S.; Brailovski, V. Electropolishing of Laser Powder Bed-Fused IN625 Components in an Ionic Electrolyte. J. Manuf. Mater. Process. 2019, 3, 86. [Google Scholar] [CrossRef] [Green Version]
- Loftis, J.D.; Abdel-Fattah, T.M. Nanoscale Electropolishing of High-Purity Nickel with an Ionic Liquid. Int. J. Miner. Metall. Mater. 2019, 26, 649–656. [Google Scholar] [CrossRef]
- Protsenko, V.S.; Butyrina, T.E.; Bobrova, L.S.; Korniy, S.A.; Danilov, F.I. Enhancing Corrosion Resistance of Nickel Surface by Electropolishing in a Deep Eutectic Solvent. Mater. Lett. 2020, 270, 127719. [Google Scholar] [CrossRef]
- Loftis, J.D.; Abdel-Fattah, T.M. Nanoscale Electropolishing of High-Purity Silver with a Deep Eutectic Solvent. Colloids Surf. A 2016, 511, 113–119. [Google Scholar] [CrossRef]
- Abdel-Fattah, T.M.; Crooks, R. Surface Characterization of High Purity Niobium Electropolished with an Ionic Liquid. ECS Trans. 2010, 33, 571–574. [Google Scholar] [CrossRef]
- Wixtrom, A.I.; Buhler, J.E.; Reece, C.E.; Abdel-Fattah, T.M. Reclamation of Niobium Compounds from Ionic Liquid Electrochemical Polishing of Superconducting Radio Frequency Cavities. J. Environ. Chem. Eng. 2013, 1, 18–22. [Google Scholar] [CrossRef]
- Wixtrom, A.I.; Buhler, J.E.; Reece, C.E.; Abdel-Fattah, T.M. Electrochemical Polishing Applications and EIS of a Novel Choline Chloride-Based Ionic Liquid. ECS Trans. 2013, 50, 199–202. [Google Scholar] [CrossRef]
- Wixtrom, A.I.; Buhler, J.E.; Reece, C.E.; Abdel-Fattah, T.M. Electrochemical Polishing Applications and EIS of a Vitamin B4-Based Ionic Liquid. J. Electrochem. Soc. 2013, 160, E22–E26. [Google Scholar] [CrossRef]
- Pastushenko, V.B.; Malkova, O.V.; Palmieri, V.; Rossi, A.A.; Stivanello, F.; Yu, G. Fluorine Free Ionic Liquid Electropolishing of Niobium Cavities. Proc. SRF 2013, TUIOC013, 410–413. [Google Scholar]
- Chu, Q.; Wu, A.; Tan, T.; Guo, H.; Xiong, P.; Huang, S.; He, Y. Electropolishing Behavior of Niobium in Choline Chloride-Based Deep Eutectic Solvents. Appl. Surf. Sci. 2021, 550, 149322. [Google Scholar] [CrossRef]
- Kityk, A.A.; Danilov, F.I.; Protsenko, V.S.; Pavlik, V.; Boča, M.; Halahovets, Y. Electropolishing of Two Kinds of Bronze in a Deep Eutectic Solvent (Ethaline). Surf. Coat. Technol. 2020, 397, 126060. [Google Scholar] [CrossRef]
- Kalmykov, K.B.; Dmitrieva, N.E.; Lebedeva, O.K.; Root, N.V.; Kultin, D.Y.; Kustov, L.M. Formation of a Regular Cellular Structure on the Surface of Zr67Ni30Si3 Alloy at Electrochemical Polishing in Ionic Liquids. Russ. Chem. Bull. 2016, 65, 2801–2804. [Google Scholar] [CrossRef]
- Brooman, E.W. Ionic Liquids for Surface Finishing Processes. Plat. Surf. Finish. 2007, 7, 54–57. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedeva, O.; Kultin, D.; Zakharov, A.; Kustov, L. Advantages of Electrochemical Polishing of Metals and Alloys in Ionic Liquids. Metals 2021, 11, 959. https://doi.org/10.3390/met11060959
Lebedeva O, Kultin D, Zakharov A, Kustov L. Advantages of Electrochemical Polishing of Metals and Alloys in Ionic Liquids. Metals. 2021; 11(6):959. https://doi.org/10.3390/met11060959
Chicago/Turabian StyleLebedeva, Olga, Dmitry Kultin, Alexandre Zakharov, and Leonid Kustov. 2021. "Advantages of Electrochemical Polishing of Metals and Alloys in Ionic Liquids" Metals 11, no. 6: 959. https://doi.org/10.3390/met11060959
APA StyleLebedeva, O., Kultin, D., Zakharov, A., & Kustov, L. (2021). Advantages of Electrochemical Polishing of Metals and Alloys in Ionic Liquids. Metals, 11(6), 959. https://doi.org/10.3390/met11060959