Correlating Prior Austenite Grain Microstructure, Microscale Deformation and Fracture of Ultra-High Strength Martensitic Steels
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Material Microstructure
3.2. Mechanical Response
3.3. Microscale Deformation Characteristics
3.4. Fracture Characteristics
4. Discussion
5. Conclusions
- The average size and bimodality (distribution of small and large grains) of the PAG distribution in the low-carbon martensitic steel increase with increasing heat-treatment temperature and time;
- The yield and tensile strengths, and ductility of the martensitic steel (as characterized by the tension tests of the dog-bone specimens) only decrease slightly with the increasing heat-treatment temperature and time (or average PAG size). However, due to the interaction of the heterogeneous deformation fields induced by the material microstructure (bimodal PAG size distribution) and the geometry of deformation (single-edge notch specimen), the fracture properties of the material (notch strength and ductility, and the crack-tip opening displacement at crack growth initiation) decrease significantly with increasing PAG heat-treatment temperature and time (or average PAG size);
- The interaction of the heterogeneous deformation fields induced by the bimodal material microstructure and the geometry of deformation (single-edge notch specimen) leads to an increase in the propensity of shear-induced deformation, which in turn gives rise to the strong dependence of the fracture properties of the martensitic steel on the average PAG size;
- The final fracture of the dog-bone specimens of the heat-treated martensitic steel occurs by void nucleation, growth, and coalescence for the range of heat-treatment parameters considered. However, the fracture surfaces of the single-edge notch specimens of the material exhibit both dimples and quasi-cleavage-like features;
- Achieving a uniform distribution of fine grains is an effective way to increase the strength levels and enhance the fracture properties of the low-carbon martensitic steels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuziak, R.; Kawalla, R.; Waengler, S. Advanced high strength steels for automotive industry. Arch. Civ. Mech. Eng. 2008, 8, 103–117. [Google Scholar] [CrossRef]
- Davies, G. Materials for Automobile Bodies; Butterworth-Heinemann; Butterworth-Heinemann: Waltham, MA, USA, 2012. [Google Scholar]
- Joost, W.J. Reducing vehicle weight and improving US energy efficiency using integrated computational materials engineering. Jom 2012, 64, 1032–1038. [Google Scholar] [CrossRef] [Green Version]
- Bouaziz, O.; Zurob, H.; Huang, M. Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res. Int. 2013, 84, 937–947. [Google Scholar] [CrossRef]
- Sato, M.; Utsumi, Y.; Watanabe, K. Ultra-High-Strength, Quench-type, Hot-Rolled Steel Sheets of 1620 MPa Grade for Automobile Door Impact Beams. Kobelco Technol. Rev. 2008, 28, 5. [Google Scholar]
- Bok, H.-H.; Lee, M.-G.; Pavlina, E.J.; Barlat, F.; Kim, H.-D. Comparative study of the prediction of microstructure and mechanical properties for a hot-stamped B-pillar reinforcing part. Int. J. Mech. Sci. 2011, 53, 744–752. [Google Scholar] [CrossRef]
- Altan, T.; Tekkaya, A.E. Sheet Metal Forming—Processes and Applications, 1st ed.; ASM International: Materials Park, OH, USA, 2012. [Google Scholar]
- Morito, S.; Tanaka, H.; Konishi, R.; Furuhara, T.; Maki, T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003, 51, 1789–1799. [Google Scholar] [CrossRef]
- Morito, S.; Huang, X.; Furuhara, T.; Maki, T.; Hansen, N. The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 2006, 54, 5323–5331. [Google Scholar] [CrossRef]
- Kitahara, H.; Ueji, R.; Tsuji, N.; Minamino, Y. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006, 54, 1279–1288. [Google Scholar] [CrossRef]
- Ghassemi-Armaki, H.; Chen, P.; Bhat, S.; Sadagopan, S.; Kumar, S.; Bower, A. Microscale-calibrated modeling of the deformation response of low-carbon martensite. Acta Mater. 2013, 61, 3640–3652. [Google Scholar] [CrossRef]
- Hata, K.; Fujiwara, K.; Wakita, M.; Kawano, K. Development of a Reconstruction Method of Prior Austenite Microstructure Using EBSD Data of Martensite; Nippon Steel & Sumitomo Metal Corporation: Tokyo, Japan, 2017. [Google Scholar]
- Krauss, G.; Matlock, D. Effects of strain hardening and fine structure on strength and toughness of tempered martensite in carbon steels. J. Phys. IV 1995, 5, C8–C51. [Google Scholar] [CrossRef] [Green Version]
- Krauss, G. Martensite in steel: Strength and structure. Mater. Sci. Eng. A 1999, 273–275, 40–57. [Google Scholar] [CrossRef]
- Krauss, G. Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall. Mater. Trans. A 2001, 32, 861–877. [Google Scholar] [CrossRef]
- Tkalcec, I.; Mari, D.; Benoit, W. Correlation between internal friction background and the concentration of carbon in solid solution in a martensitic steel. Mater. Sci. Eng. A 2006, 442, 471–475. [Google Scholar] [CrossRef]
- Morito, S.; Yoshida, H.; Maki, T.; Huang, X. Effect of block size on the strength of lath martensite in low carbon steels. Mater. Sci. Eng. A 2006, 438–440, 237–240. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Ren, J.; Li, R.; Wang, M.; Zhang, F.; Sun, K. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Mater. Sci. Eng. A 2012, 534, 339–346. [Google Scholar] [CrossRef]
- Prawoto, Y.; Jasmawati, N.; Sumeru, K. Effect of Prior Austenite Grain Size on the Morphology and Mechanical Properties of Martensite in Medium Carbon Steel. J. Mater. Sci. Technol. 2012, 28, 461–466. [Google Scholar] [CrossRef]
- Hanamura, T.; Torizuka, S.; Tamura, S.; Enokida, S.; Takechi, H. Effect of Austenite Grain Size on Transformation Behavior, Microstructure and Mechanical Properties of 0.1C–5Mn Martensitic Steel. ISIJ Int. 2013, 53, 2218–2225. [Google Scholar] [CrossRef] [Green Version]
- Kaijalainen, A.J.; Suikkanen, P.P.; Limnell, T.J.; Karjalainen, L.P.; Kömi, J.I.; Porter, D.A. Effect of austenite grain structure on the strength and toughness of direct-quenched martensite. J. Alloy. Compd. 2013, 577, S642–S648. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Subramanian, S.V.; Shang, C.; Misra, R.D.K. Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel. Mater. Sci. Eng. A 2014, 616, 141–147. [Google Scholar] [CrossRef]
- Wang, J.; Singh, J.; Ramisetti, N. Process Influences on Press-Hardened Steel Microstructure and Impact Performance. Iron Steel Technol. 2016, 13, 124–132. [Google Scholar]
- Białobrzeska, B.; Konat, Ł.; Jasiński, R. The influence of austenite grain size on the mechanical properties of low-alloy steel with boron. Metals 2017, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Golem, L.; Cho, L.; Speer, J.G.; Findley, K.O. Influence of austenitizing parameters on microstructure and mechanical properties of Al-Si coated press hardened steel. Mater. Des. 2019, 172, 107707. [Google Scholar] [CrossRef]
- ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2021.
- BS 8571 Method of Test for Determination of Fracture Toughness in Metallic Materials Using Single Edge Notched Tension (SENT) Specimens; British Standards Institution: London, UK, 2018.
- Blaber, J.; Adair, B.; Antoniou, A. Ncorr: Open-source 2D digital image correlation matlab software. Exp. Mech. 2015, 55, 1105–1122. [Google Scholar] [CrossRef]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Grain detection from 2d and 3d EBSD data—Specification of the MTEX algorithm. Ultramicroscopy 2011, 111, 1720–1733. [Google Scholar] [CrossRef]
- Hielscher, R.; Silbermann, C.B.; Schmidl, E.; Ihlemann, J. Denoising of crystal orientation maps. J. Appl. Crystallogr. 2019, 52, 984–996. [Google Scholar] [CrossRef] [Green Version]
- Yardley, V.; Fahimi, S.; Payton, E. Classification of creep crack and cavitation sites in tempered martensite ferritic steel microstructures using MTEX toolbox for EBSD. Mater. Sci. Technol. 2015, 31, 547–553. [Google Scholar] [CrossRef]
- Nyyssönen, T.; Isakov, M.; Peura, P.; Kuokkala, V.-T. Iterative determination of the orientation relationship between austenite and martensite from a large amount of grain pair misorientations. Metall. Mater. Trans. A 2016, 47, 2587–2590. [Google Scholar] [CrossRef]
- ASTM E112-13 Standard Test Methods for Determining Average Grain Size; ASTM International: West Conshohocken, PA, USA, 2013.
- Morito, S.; Saito, H.; Ogawa, T.; Furuhara, T.; Maki, T. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels. ISIJ Int. 2005, 45, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Van Minnebruggen, K.; Verstraete, M.; Hertelé, S.; De Waele, W. Evaluation and Comparison of Double Clip Gauge Method and Delta 5 Method for CTOD Measurement in SE (T) Specimens. J. Test. Eval. 2015, 44, 2414–2423. [Google Scholar] [CrossRef]
- Zhu, X.-K. Advances in Fracture Toughness Test Methods for Ductile Materials in Low-Constraint Conditions. Procedia Eng. 2015, 130, 784–802. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhou, W. J-CTOD relationship for clamped SE(T) specimens based on three-dimensional finite element analyses. Eng. Fract. Mech. 2014, 131, 643–655. [Google Scholar] [CrossRef]
- ABAQUS User’s Mannual; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2018.
- Zheng, X.; Ghassemi-Armaki, H.; Srivastava, A. Structural and microstructural influence on deformation and fracture of dual-phase steels. Mater. Sci. Eng. A 2020, 774, 138924. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, D.; Bhat, S.P.; Srivastava, A. Ductile fracture of dual-phase steel sheets under bending. Int. J. Plast. 2020, 125, 80–96. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, D.; Arróyave, R.; Srivastava, A. Microstructure-Based Modeling of the Effect of Inclusion on the Bendability of Advanced High Strength Dual-Phase Steels. Metals 2021, 11, 431. [Google Scholar] [CrossRef]
- Chausov, M.; Maruschak, P.; Hutsaylyuk, V.; Śnieżek, L.; Pylypenko, A. Effect of complex combined loading mode on the fracture toughness of titanium alloys. Vacuum 2018, 147, 51–57. [Google Scholar] [CrossRef]
- Yasniy, P.; Okipnyi, I.; Maruschak, P.; Panin, S.V.; Konovalenko, I. Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation. Theor. Appl. Fract. Mech. 2013, 63, 63–68. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, X.; Madigan, B.; Cao, H.; Konovalov, S. Effects of strain rate on the hot deformation behavior and dynamic recrystallization in China low activation martensitic steel. Fusion Eng. Des. 2016, 103, 21–30. [Google Scholar] [CrossRef]
Heat-Treatment Conditions | |||||
---|---|---|---|---|---|
870 °C 4 min | 0.7 | 2.9 | 7.3 | 1.4 | 3.4 |
870 °C 10 min | 0.6 | 3.6 | 8.4 | 1.8 | 3.7 |
930 °C 4 min | 0.6 | 4.2 | 10.0 | 2.1 | 4.6 |
930 °C 10 min | 0.8 | 6.2 | 20.3 | 3.5 | 13.4 |
950 °C 10 min | 0.5 | 6.5 | 18.8 | 3.2 | 9.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Ghassemi-Armaki, H.; Hartwig, K.T.; Srivastava, A. Correlating Prior Austenite Grain Microstructure, Microscale Deformation and Fracture of Ultra-High Strength Martensitic Steels. Metals 2021, 11, 1013. https://doi.org/10.3390/met11071013
Zheng X, Ghassemi-Armaki H, Hartwig KT, Srivastava A. Correlating Prior Austenite Grain Microstructure, Microscale Deformation and Fracture of Ultra-High Strength Martensitic Steels. Metals. 2021; 11(7):1013. https://doi.org/10.3390/met11071013
Chicago/Turabian StyleZheng, Xinzhu, Hassan Ghassemi-Armaki, Karl T. Hartwig, and Ankit Srivastava. 2021. "Correlating Prior Austenite Grain Microstructure, Microscale Deformation and Fracture of Ultra-High Strength Martensitic Steels" Metals 11, no. 7: 1013. https://doi.org/10.3390/met11071013
APA StyleZheng, X., Ghassemi-Armaki, H., Hartwig, K. T., & Srivastava, A. (2021). Correlating Prior Austenite Grain Microstructure, Microscale Deformation and Fracture of Ultra-High Strength Martensitic Steels. Metals, 11(7), 1013. https://doi.org/10.3390/met11071013