A Combined Strategy to Improve the Performance of Dental Alloys Using a New CoCrNbMoZr Alloy with Mn and Si Coated via an Anodic Oxidation Procedure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Modification
2.3. Morphological and Structural Surface Analysis
2.4. Bio-Corrosion Tests
3. Results and Discussion
3.1. CoCrNbMoZr Alloy Anodisation
3.2. Morphological and Structural Characterisation
3.2.1. Scanning Electron Microscopy (SEM) Measurements
3.2.2. XRD Measurements
3.3. Contact Angle Evaluation
3.4. Electrochemichal Characterisation
3.4.1. Open Circuit Potential Tests
3.4.2. Electrochemical Impedance Spectroscopy Measurements
3.4.3. Potentiodynamic Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ambili, C.; Keshava Prasad, B.S. The era of future dentistry: Recent advances and future perspectives of restorative dentistry: A literature review. Int. J. Appl. Dent. Sci. 2019, 5, 111–116. [Google Scholar]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Padrós, R.; Punset, M.; Molmeneu, M.; Brizuela Velasco, A.; Herrero-Climent, M.; Rupérez, E.; Gil, F.J. Mechanical Properties of CoCr Dental-Prosthesis Restorations Made by Three Manufacturing Processes. Influence of the Microstructure and Topography. Metals 2020, 10, 788. [Google Scholar] [CrossRef]
- Scharf, B.; Clement, C.C.; Zolla, V.; Perino, G.; Yan, B.; Elci, S.G.; Purdue, E.; Goldring, S.R.; Macaluso, F.; Cobelli, N.; et al. Molecular analysis of chromium and cobalt-related toxicity. Sci. Rep. 2015, 4, 5729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, I.; Amorim, J.R.; Perázzio, E.F.; Schmitz Junior, R. Metal contact dermatitis: Prevalence to nickel, cobalt and chromium. An. Bras. Dermatol. 2005, 80, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Golgovici, F.; Prodana, M.; Ionascu, F.G.; Demetrescu, I. A Comparative Electrochemical and Morphological Investigation on the Behavior of NiCr and CoCr Dental Alloys at Various Temperatures. Metals 2021, 11, 256. [Google Scholar] [CrossRef]
- Lugovic-Mihic, L.; Ilić, I.; Budimir, J.; Pondeljak, N.; Mravak Stipetić, M. Common allergies and allergens in oral and perioral diseases. Acta Clin. Croat. 2020, 59, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Liu, H.; Niinomi, M.; Horita, Z.; Fujii, H.; Hanawa, T. Fatigue property and cyto compatibility of a biomedical Co-Cr-Mo alloy subjected to a high-pressure torsion and a subsequent short time annealing. Mater. Trans. 2020, 61, 361–367. [Google Scholar] [CrossRef]
- Ramírez-Ledesma, L.; Roncagliolo, P.; Alvarez-Perez, M.A.; Lopez, H.F.; Juárez-Islas, J.A. Corrosion assessment of an implantable dental Co-Cr alloy in artificial saliva and biocompatibility behavior. J. Mater. Eng. Perform. 2020, 29, 1657–1670. [Google Scholar] [CrossRef]
- Galateanu, B.; Golgovici, F.; Hudita, A.; Stan, M.; Dinescu, S.; Costache, M.; Demetrescu, I.; Popescu, A. About electrochemical stability and biocompatibility of two types of CoCr commercial dental alloys. Mater. Corros. 2016, 67, 1096–1104. [Google Scholar] [CrossRef]
- Liu, R.; Li, X.; Hu, X.; Dong, H. Surface modification of a medical grade Co-Cr-Mo alloy by low-temperature plasma surface alloying with nitrogen. Surf. Coat. Techn. 2013, 232, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Romonti, D.C.; Iskra, J.; Bele, M.; Demetrescu, I.; Milošev, I. Elaboration and characterization of fluorohydroxyapatite and fluoroapatite sol− gel coatings on CoCrMo alloy. J. Alloys Compd. 2016, 665, 355–364. [Google Scholar] [CrossRef]
- Ahirwar, H.; Zhou, Y.; Mahapatra, C.; Ramakrishna, S.; Kumar, P.; Nanda, H.S. Materials for Orthopedic Bioimplants: Modulating Degradation and Surface Modification Using Integrated Nanomaterials. Coatings 2020, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Golgovici, F.; Prodana, M.; Popescu, A. Effect of reprocessing treatment on the corrosion of Co–Cr alloy in acid media. Rev. Chim. 2015, 66, 660–667. [Google Scholar]
- Ionita, D.; Man, I.; Demetrescu, I. The behaviour of electrochemical deposition of phosphate coating on CoCr bio alloys. Key Eng. Mater. 2007, 330–332, 545–548. [Google Scholar] [CrossRef]
- Mezour, M.A.; Oweis, Y.; El-Hadad, A.A.; Algizani, S.; Tamimi, F.; Cerruti, M. Surface modification of CoCr alloys by electrochemical reduction of diazonium salts. RSC Adv. 2018, 8, 23191–23198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E. A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property. Mat. Sci. Eng. C 2016, 69, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Drob, S.I.; Vasilescu, C.; Andrei, M.; Calderon Moreno, J.M.; I Demetrescu, I. Microstructural, mechanical and anticorrosion characterisation of new CoCrNbMoZr alloy. Mater. Corros. 2015, 67, 739–747. [Google Scholar] [CrossRef]
- Zhang, E.; Zhao, X.; Hu, J.; Wang, R.; Fu, S.; Qin, G. Antibacterial metals and alloys for potential biomedical implants. Bioact. Mater. 2021, 6, 2569–2612. [Google Scholar] [CrossRef] [PubMed]
- Matusiewicz, H. Potential release of in vivo trace metals from metallic medical implants in the human body. From ions to nanoparticles — a systematic analytical review. Acta Biomater. 2014, 10, 2379–2403. [Google Scholar] [CrossRef] [PubMed]
- Laine, J.; Kalimo, K.; Happonen, R.P. Contact allergy to dental restorative materials in patients with oral lichenoid lesions. Contact Dermat. 1997, 36, 141–146. [Google Scholar] [CrossRef]
- Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices. Available online: http://data.europa.eu/eli/reg/2017/745/ (accessed on 15 May 2021).
- Vaicelyte, A.; Janssen, C.; Le Borgne, M.; Grosgogeat, B. Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. Crystals 2020, 10, 1151. [Google Scholar] [CrossRef]
- Han, W.; Fang, F. Investigation of electrochemical properties of electropolishing Co–Cr dental alloy. J. Appl. Electrochem. 2020, 50, 367–381. [Google Scholar] [CrossRef]
- Andrei, M.; Galateanu, B.; Hudita, A.; Costache, M.; Osiceanu, P.; Moreno, J.M.C.; Demetrescu, I. Electrochemical comparison and biological performance of a new CoCrNbMoZr alloy with commercial CoCrMo alloy. Mater. Sci. Eng. C 2016, 59, 346–355. [Google Scholar] [CrossRef]
- Ionita, D.; Golgovici, F.; Mazare, A.; Badulescu, M.; Demetrescu, I. Corrosion and antibacterial characterization of Ag—DLC coatingon a new CoCrNbMoZr dental alloy. Mater. Corros. 2018, 69, 1403–1411. [Google Scholar] [CrossRef]
- Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, V.; Zhou, F.; D’Urso, B.; Liu, H.; Li, L. Study on the surface energy of graphene by contact angle measurements. Langmuir 2014, 30, 8598–8606. [Google Scholar] [CrossRef] [PubMed]
- Katsikogianni, M.; Missirlis, Y.F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cell. Mater. 2004, 8, 37–57. [Google Scholar] [CrossRef]
- Duffó, G.S.; Quezada Castillo, E. Development of an Artificial Saliva Solution for Studying the Corrosion Behavior of Dental Alloys. Corrosion 2004, 60, 594–602. [Google Scholar] [CrossRef]
- Al-Imam, H.; Benetti, A.R.; Ozhayat, E.B.; Pedersen, A.M.L.; Johansen, J.D.; Thyssen, J.; Jellesen, M.S.; Gotfredsen, K. Cobalt release and complications resulting from the use of dental prostheses. Contact Dermat. 2016, 75, 377–383. [Google Scholar] [CrossRef]
- Garcia-Falcon, C.M.; Gil-Lopez, T.; Verdu-Vazquez, A.; Mirza-Rosca, J.C. Electrochemical characterization of some cobalt base alloys in Ringer solution. Mat. Chem. Phys. 2021, 260, 124164. [Google Scholar] [CrossRef]
- Tsegay, M.G.; Gebretinsae, H.G.; Nuru, Z.Y. Structural and optical properties of green synthesized Cr2O3 nanoparticle. Mater. Today Proc. 2021, 36, 587–590. [Google Scholar] [CrossRef]
- Guo, Q.; Guo, X.; Tian, Q. Optionally ultra-fast synthesis of CoO/Co3O4 particles using CoCl2 solution via a versatile spray roasting method. Adv. Powder Technol. 2010, 21, 529–533. [Google Scholar] [CrossRef]
- Li, J.; Liu, W.W.; Zhou, H.M.; Liu, Z.Z.; Chen, B.R.; Sun, W.J. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018, 37, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Shen, R.; Yang, R.; Ji, W.; Jiang, M.; Ding, W.; Peng, L. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries. Sci. Rep. 2017, 7, 44697. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, T.; Gonçales, V.; Petri, D.; Córdoba de Torresi, S.; Torresi, R. Macroporous MnO2 electrodes obtained by template assisted electrodeposition for electrochemical capacitors. J. Braz. Chem. Soc. 2010, 21, 1704–1709. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, C.; Cheng, W.; Zhang, Q.; Nie, W. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment. J. Anal. Methods Chem. 2015, 2015, 467242. [Google Scholar] [CrossRef] [Green Version]
- Milosev, I.; Strehblow, H.H. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochim. Acta 2003, 48, 2767–2774. [Google Scholar] [CrossRef]
- Vasilescu, E.; Drob, P.; Raducanu, D.; Cinca, E.; Mareci, D.; Calderon Moreno, J.M.; Popa, M.; Vasilescu, C.; Mirza Rosca, J.C. Effect of thermo-mechanical processing on the corrosion resistance of Ti6Al4V alloys in biofluids. Corros. Sci. 2009, 51, 2885–2896. [Google Scholar] [CrossRef]
- ISO 8044/2000. Corrosion of metals and alloys. Basic terms and definitions Status: Revised, Withdrawn Published: April 2000 Replaced By: BS EN ISO8044:2020.
- Valero Vidal, C.; Igual Muñoz, A. Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids. Corros. Sci. 2008, 50, 1954–1961. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Q.; Xie, X.; Cao, X.; Wu, Y.; Chen, S.; Qu, J. Electrochemical behavior of CoCrMo alloy for dental applications in acidic artificial saliva containing albumin. Colloids Surf. B Biointerfaces 2019, 184, 110492. [Google Scholar] [CrossRef]
Alloying Elements, [wt. %] | ||||||
---|---|---|---|---|---|---|
Co | Cr | Nb | Mo | Zr | Mn | Si |
60 ± 1.4 | 26.5 ± 0.9 | 6 ± 0.5 | 4.5 ± 0.3 | 0.8 ± 0.2 | 0.8 ± 0.2 | 1 ± 0.2 |
Sample | C | O | Si | Cr | Co | Zr | Nb | Mo |
---|---|---|---|---|---|---|---|---|
S2 | 6.91 ± 1.15 | 32.74 ± 1.11 | 2.81 ± 0.04 | 16.21 ± 1.11 | 30.91 ± 1.19 | 0.99 ± 0.11 | 5.55 ± 0.55 | 3.89 ± 0.23 |
S3 | 5.93 ± 1.10 | 55.36 ± 1.24 | 3.65 ± 0.03 | 11.61 ± 1.09 | 11.79 ± 1.11 | 3.95 ± 0.25 | 4.61 ± 0.34 | 3.11 ± 0.15 |
S4 | 14.63 ± 1.12 | 50.11 ± 1.13 | 2.28 ± 0.02 | 14.25 ± 1.05 | 8.34 ± 1.15 | 1.28 ± 0.12 | 6.95 ± 0.45 | 2.17 ± 0.25 |
Sample | Rs, Ω·cm2 | CPEdl—T, F·cm−2 | CPEdl—P | Rct, Ω·cm2 | Ccoat, F·cm−2 | Rcoat, Ω·cm2 | Chi-Squared (χ2) |
---|---|---|---|---|---|---|---|
S1 | 48.72 | 3.27 × 10−6 | 0.72 | 1071 | – | – | 1.3 × 10−3 |
S2 | 35.6 | 2.41 × 10−6 | 0.68 | 35.3 | 1.15 × 10−5 | 2400 | 1.2 × 10−2 |
S3 | 43.1 | 1.09 × 10−6 | 0.71 | 50.6 | 3.52 × 10−5 | 20696 | 1 × 10−2 |
S4 | 49.9 | 2.21 × 10−6 | 0.69 | 37.3 | 4.34 × 10−5 | 5245 | 5.6 × 10−3 |
Sample | Tafel Method | Polarization Resistance Method | |||||
---|---|---|---|---|---|---|---|
Ecorr, mV | icorr, μA×cm−2 | Kg, g×m−2h−1 | P, mm×year−1 | RP, KΩ | icorr, μA×cm−2 | E, % | |
S1 | −322 | 6.06 | 0.0686 | 0.0772 | 5.03 | 5.57 | – |
S2 | −272 | 2.49 | 0.0283 | 0.0317 | 11.96 | 2.51 | 58.91 |
S3 | −274 | 0.872 | 0.0099 | 0.0111 | 42.75 | 0.85 | 85.61 |
S4 | −260 | 1.64 | 0.0186 | 0.0209 | 21.26 | 1.65 | 72.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionascu, F.G.; Prodana, M.; Golgovici, F.; Demetrescu, I. A Combined Strategy to Improve the Performance of Dental Alloys Using a New CoCrNbMoZr Alloy with Mn and Si Coated via an Anodic Oxidation Procedure. Metals 2021, 11, 1017. https://doi.org/10.3390/met11071017
Ionascu FG, Prodana M, Golgovici F, Demetrescu I. A Combined Strategy to Improve the Performance of Dental Alloys Using a New CoCrNbMoZr Alloy with Mn and Si Coated via an Anodic Oxidation Procedure. Metals. 2021; 11(7):1017. https://doi.org/10.3390/met11071017
Chicago/Turabian StyleIonascu, Florentina Gina, Mariana Prodana, Florentina Golgovici, and Ioana Demetrescu. 2021. "A Combined Strategy to Improve the Performance of Dental Alloys Using a New CoCrNbMoZr Alloy with Mn and Si Coated via an Anodic Oxidation Procedure" Metals 11, no. 7: 1017. https://doi.org/10.3390/met11071017
APA StyleIonascu, F. G., Prodana, M., Golgovici, F., & Demetrescu, I. (2021). A Combined Strategy to Improve the Performance of Dental Alloys Using a New CoCrNbMoZr Alloy with Mn and Si Coated via an Anodic Oxidation Procedure. Metals, 11(7), 1017. https://doi.org/10.3390/met11071017