Electron Beam Powder Bed Fusion of γ-Titanium Aluminide: Effect of Processing Parameters on Part Density, Surface Characteristics, and Aluminum Content
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Evaluation of Central Composite Design
3.2. Selection of Optimized Parameter Set
- Porous: the surfaces exhibit a large amount of surface pores with almost no consistent melt tracks and a very irregular appearance;
- Slightly porous: the individual melt tracks can be distinguished, but areas with surface pores and unmelted powder particles are visible;
- Even: smooth surfaces with parallel, undistorted melt tracks;
- Wavy: the surfaces are mostly flat, but the melt tracks show noticeable curls and distortions;
- Swelling: the sample surfaces show conspicuous bulges and irregularities
3.3. Surface Characterization
3.4. Aluminum Loss
4. Discussion
5. Conclusions and Outlook
- Both the arithmetical mean height Sa and the texture aspect ratio Str decrease with increasing energy input. This observation could be linked to the top surface topography, which exhibited inhomogeneous, discontinuous melt tracks at insufficient energy densities, while evenly aligned hatch lines were visible in the case of the optimized parameter set.
- The aluminum content substantially decreases with increasing volumetric energy densities. In order to compensate for the expected aluminum evaporation during the process, the raw material was alloyed with an excess of approximately 3 at.% aluminum in comparison to the nominal composition of the TNM-B1 alloy powder. Using the optimized parameter set for EB-PBF, the resulting aluminum content after the process amounted to 43.7 ± 0.6 at.%, which was in good agreement with the chemical composition of conventionally processed TNM-B1.
- The resulting microstructures are apparently highly sensitive to the applied process parameters and the associated aluminum evaporation. With increasing energy input, an increase in the amount of β0-phase and a wide lamellar spacing in the α2-/γ-colonies were observed. Although the mechanical properties are yet to be investigated, a rather brittle behavior is expected as a consequence of this microstructural composition. Hence, future research will address the evaluation of appropriate heat-treatment strategies. In addition, quasi-static and cyclic investigations will be performed to characterize the different material states.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clemens, H.; Mayer, S. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys. Adv. Eng. Mater. 2013, 15, 191–215. [Google Scholar] [CrossRef]
- Clemens, H.; Mayer, S. Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties. Mater. High Temp. 2016, 33, 560–570. [Google Scholar] [CrossRef]
- Reith, M.; Franke, M.; Schloffer, M.; Körner, C. Processing 4th generation titanium aluminides via electron beam based additive manufacturing—Characterization of microstructure and mechanical properties. Materialia 2020, 14, 100902. [Google Scholar] [CrossRef]
- Appel, F.; Paul, D.H.; Oehring, M. Gamma Titanium Aluminide Alloys; Science and Technology, WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Pflumm, R.; Donchev, A.; Mayer, S.; Clemens, H.; Schütze, M. High-temperature oxidation behavior of multi-phase Mo-containing γ-TiAl-based alloys. Intermetallics 2014, 53, 45–55. [Google Scholar] [CrossRef]
- Schloffer, M.; Rashkova, B.; Schöberl, T.; Schwaighofer, E.; Zhang, Z.; Clemens, H.; Mayer, S. Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness. Acta Mater. 2014, 64, 241–252. [Google Scholar] [CrossRef]
- Wimler, D.; Lindemann, J.; Reith, M.; Kirchner, A.; Allen, M.; Vargas, W.G.; Franke, M.; Klöden, B.; Weißgärber, T.; Güther, V.; et al. Designing advanced intermetallic titanium aluminide alloys for additive manufacturing. Intermetallics 2021, 131, 107109. [Google Scholar] [CrossRef]
- Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016, 61, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Juechter, V.; Franke, M.M.; Merenda, T.; Stich, A.; Körner, C.; Singer, R.F. Additive manufacturing of Ti-45Al-4Nb-C by selective electron beam melting for automotive applications. Addit. Manuf. 2018, 22, 118–126. [Google Scholar] [CrossRef]
- Mayer, S.; Schimbäck, D.; Wartbichler, R.; Wimler, D.; Clemens, H. Metallography of Intermetallic Titanium Aluminides—The (Additive) Manufacturing Makes the Difference. Pract. Metallogr. 2019, 56, 567–584. [Google Scholar] [CrossRef]
- Galati, M.; Iuliano, L. A literature review of powder-based electron beam melting focusing on numerical simulations. Addit. Manuf. 2018, 19, 1–20. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Wartbichler, R.; Clemens, H.; Mayer, S. Electron Beam Melting of a β-Solidifying Intermetallic Titanium Aluminide Alloy. Adv. Eng. Mater. 2019, 21, 1900800. [Google Scholar] [CrossRef]
- Cormier, D.; Harrysson, O.; Mahale, T.; West, H. Freeform Fabrication of Titanium Aluminide via Electron Beam Melting Using Prealloyed and Blended Powders. Res. Lett. Mater. Sci. 2007, 2007, 1–4. [Google Scholar] [CrossRef]
- Murr, L.E.; Gaytan, S.M.; Ceylan, A.; Martinez, E.; Martinez, J.L.; Hernandez, D.H.; Machado, B.I.; Ramirez, D.A.; Medina, F.; Collins, S. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater. 2010, 58, 1887–1894. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, H.; Wang, X. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting. Mater. Sci. Eng. A 2018, 713, 195–205. [Google Scholar] [CrossRef]
- Yue, H.; Chen, Y.; Wang, X.; Kong, F. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting. J. Alloys Compd. 2018, 750, 617–625. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.; Yu, Y.; Li, Y.; Qian, Y.; Firouzian, K.; Lin, F. Research on aluminum component change and phase transformation of TiAl-based alloy in electron beam selective melting process under multiple scan. Intermetallics 2019, 113, 106575. [Google Scholar] [CrossRef]
- Biamino, S.; Penna, A.; Ackelid, U.; Sabbadini, S.; Tassa, O.; Fino, P.; Pavese, M.; Gennaro, P.; Badini, C. Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation. Intermetallics 2011, 19, 776–781. [Google Scholar] [CrossRef]
- Schwerdtfeger, J.; Körner, C. Selective electron beam melting of Ti–48Al–2Nb–2Cr: Microstructure and aluminium loss. Intermetallics 2014, 49, 29–35. [Google Scholar] [CrossRef]
- Todai, M.; Nakano, T.; Liu, T.; Yasuda, H.Y.; Hagihara, K.; Cho, K.; Ueda, M.; Takeyama, M. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting. Addit. Manuf. 2017, 13, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.P.; Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L.; Qian, M. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting. Mater. Sci. Eng. A 2015, 636, 103–107. [Google Scholar] [CrossRef]
- Bieske, J.; Franke, M.; Schloffer, M.; Körner, C. Microstructure and properties of TiAl processed via an electron beam powder bed fusion capsule technology. Intermetallics 2020, 126, 106929. [Google Scholar] [CrossRef]
- Siebertz, K.; van Bebber, D.; Hochkirchen, T. Statistische Versuchsplanung; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-05492-1. [Google Scholar] [CrossRef]
- Beraud, N.; Vignat, F.; Villeneuve, F.; Dendievel, R. Improving dimensional accuracy in EBM using beam characterization and trajectory optimization. Addit. Manuf. 2017. [Google Scholar] [CrossRef]
- Kurzynowski, T.; Madeja, M.; Dziedzic, R.; Kobiela, K. The Effect of EBM Process Parameters on Porosity and Microstructure of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy. Scanning 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juechter, V.; Scharowsky, T.; Singer, R.F.; Körner, C. Processing window and evaporation phenomena for Ti–6Al–4V produced by selective electron beam melting. Acta Mater. 2014, 76, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Rafi, K.; Starr, T.; Stucker, B. The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4V Parts Fabricated By Selective Laser Melting and Electron Beam Melting. In Proceedings of the 24th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 12–14 August 2013. [Google Scholar]
- Villars, P.; Calvert, L.D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases; ASM International: Novelty, OH, USA, 1991; ISBN 978-0-87170-416-0. [Google Scholar]
- Bandyopadhyay, J.; Gupta, K.P. Low temperature lattice parameters of Al and Al-Zn alloys and Grüneisen parameter of Al. Cryogenics 1978, 18, 54–55. [Google Scholar] [CrossRef]
- DIN EN ISO 25178-2:2012-09 Geometrical Product Specifications (GPS)-Surface Texture: Areal-Part 2: Terms, Definitions and Surface Texture Parameters (ISO 25178-2:2012), German version EN ISO 25178-2:2012; Beuth Verlag: Berlin, Germany, 2012. [CrossRef]
- Schwaighofer, E.; Clemens, H.; Mayer, S.; Lindemann, J.; Klose, J.; Smarsly, W.; Güther, V. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy. Intermetallics 2014, 44, 128–140. [Google Scholar] [CrossRef]
- Kan, W.; Chen, B.; Peng, H.; Liang, Y.; Lin, J. Formation of columnar lamellar colony grain structure in a high Nb-TiAl alloy by electron beam melting. J. Alloys Compd. 2019, 809, 151673. [Google Scholar] [CrossRef]
- Körner, C.; Bauereiß, A.; Attar, E. Fundamental consolidation mechanisms during selective beam melting of powders. Model. Simul. Mater. Sci. Eng. 2013, 21, 085011. [Google Scholar] [CrossRef] [Green Version]
- Lou, S.; Jiang, X.; Sun, W.; Zeng, W.; Pagani, L.; Scott, P.J. Characterisation methods for powder bed fusion processed surface topography. Precis. Eng. 2019, 57, 1–15. [Google Scholar] [CrossRef]
- Klassen, A.; Forster, V.E.; Juechter, V.; Körner, C. Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl. J. Mater. Process. Technol. 2017, 247, 280–288. [Google Scholar] [CrossRef]
- Juechter, V. Grundlagen des Selektiven Elektronenstrahlschmelzens von Titanaluminiden. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2018. [Google Scholar]
- Barriobero-Vila, P.; Gussone, J.; Stark, A.; Schell, N.; Haubrich, J.; Requena, G. Peritectic titanium alloys for 3D printing. Nat. Commun. 2018, 9, 3426. [Google Scholar] [CrossRef] [PubMed]
Continuous Factors | Axial Point –Low Level | Cube Point –Low Level | Central Point | Cube Point –High Level | Axial Point –High Level |
---|---|---|---|---|---|
Beam current/mA | 7.5 | 10 | 12.5 | 15 | 17.5 |
Scan speed/mm/s | 1750 | 2500 | 3250 | 4000 | 4750 |
Focus offset/mA | 1 | 2 | 3 | 4 | 5 |
Line offset/mm | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 |
Categorical factor | Low value | High value | |||
Layer thickness/µm | 50 | 70 |
Beam Current | Scan Speed | Focus Offset | Line Offset | Layer Thickness | Relative Density |
---|---|---|---|---|---|
15 mA | 4000 mm/s | 3 mA | 0.1 mm | 70 µm | 99.90% ± 0.04% |
Phase | Phase Fraction/% | Phase Fraction Corr./% | Phase Definition [29,30] | ||||||
---|---|---|---|---|---|---|---|---|---|
a/Å | b/Å | c/Å | Alpha/° | Beta/° | Gamma/° | Spacegroup | |||
TiAl–gamma/γ-phase | 73.97 | 89.38 | 4.05 | 4.05 | 4.13 | 90 | 90 | 90 | 123 |
Titanium-Cubic/β-phase | 5.57 | 6.73 | 3.31 | 3.31 | 3.31 | 90 | 9 | 90 | 229 |
Ti3Al–alpha2/α2-phase | 2.44 | 3.89 | 5.78 | 5.78 | 4.65 | 90 | 90 | 120 | 194 |
Titanium-Hexagonal/α-phase | 0.78 | - | 2.95 | 2.95 | 4.68 | 90 | 90 | 120 | 194 |
Zero solution | 17.24 | - | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moritz, J.; Teschke, M.; Marquardt, A.; Stepien, L.; López, E.; Brückner, F.; Macias Barrientos, M.; Walther, F.; Leyens, C. Electron Beam Powder Bed Fusion of γ-Titanium Aluminide: Effect of Processing Parameters on Part Density, Surface Characteristics, and Aluminum Content. Metals 2021, 11, 1093. https://doi.org/10.3390/met11071093
Moritz J, Teschke M, Marquardt A, Stepien L, López E, Brückner F, Macias Barrientos M, Walther F, Leyens C. Electron Beam Powder Bed Fusion of γ-Titanium Aluminide: Effect of Processing Parameters on Part Density, Surface Characteristics, and Aluminum Content. Metals. 2021; 11(7):1093. https://doi.org/10.3390/met11071093
Chicago/Turabian StyleMoritz, Juliane, Mirko Teschke, Axel Marquardt, Lukas Stepien, Elena López, Frank Brückner, Marina Macias Barrientos, Frank Walther, and Christoph Leyens. 2021. "Electron Beam Powder Bed Fusion of γ-Titanium Aluminide: Effect of Processing Parameters on Part Density, Surface Characteristics, and Aluminum Content" Metals 11, no. 7: 1093. https://doi.org/10.3390/met11071093
APA StyleMoritz, J., Teschke, M., Marquardt, A., Stepien, L., López, E., Brückner, F., Macias Barrientos, M., Walther, F., & Leyens, C. (2021). Electron Beam Powder Bed Fusion of γ-Titanium Aluminide: Effect of Processing Parameters on Part Density, Surface Characteristics, and Aluminum Content. Metals, 11(7), 1093. https://doi.org/10.3390/met11071093