Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallgram, W.; Schleinkofer, U. Synthesis, Structure, and Behavior of a new CVD TiB2 Coatings with Extraordinary Properties for High Performance Applications. In Proceedings of the 17th Plansee Seminar, Reutte, Austria, 25–29 May 2009. [Google Scholar]
- Taktak, S. Tribological behaviour of borided bearing steels at elevated temperatures. Surf. Coat. Technol. 2006, 201, 2230–2239. [Google Scholar] [CrossRef]
- Hassan, H.B.; Abdel Hamid, Z. Electroless Ni-B supported on carbon for direct alcohol fuel cell applications. Int. J. Hydrogen Energy 2001, 36, 849–856. [Google Scholar] [CrossRef]
- Li, H.; Yao, D.; Fu, Q.; Liu, L.; Zhang, Y.; Yao, X.; Wang, Y.; Li, H. Anti-oxidation and ablation properties of carbon/carbon composites infiltrated by hafnium boride. Carbon 2013, 52, 418–426. [Google Scholar] [CrossRef]
- Ribeiro, R.; Ingole, S.; Usta, M.; Bindal, C.; Ucisik, A.H.; Liang, H. Tribological investigation of tantalum boride coating under dry and simulated body fluid conditions. Wear 2007, 262, 1380–1386. [Google Scholar] [CrossRef]
- Goncharov, A.A.; Ignatenko, P.I.; Petukhov, V.V.; Konovalov, V.A.; Volkova, G.K.; Stupak, V.A.; Glazunova, V.A. Composition, structure, and properties of tantalum boride nanostructured films. Tech. Phys. 2006, 51, 1340–1343. [Google Scholar] [CrossRef]
- Goncharov, A.A.; Petukhov, V.V.; Terpii, D.N.; Ignatenko, P.I.; Stupak, V.A. Nanostructured Films of Vanadium Borides. Inorg. Mater. 2005, 41, 696–699. [Google Scholar] [CrossRef]
- Kunc, F.; Musil, J.; Mayrhofer, P.H.; Mitterer, C. Low–stress superhard Ti-B films prepared by magnetron sputtering. Surf. Coat. Technol. 2003, 174–175, 744–753. [Google Scholar] [CrossRef]
- Ferrando, V.; Tarantini, C.; Manfrinetti, P.; Pallecchi, I.; Salvato, M.; Ferdeghini, C. Growth of diborides thin films on different substrates by pulsed laser ablation. Thin Solid Films 2006, 515, 1439–1444. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Jayaraman, S.; Gerbi, J.E.; Kumar, N.; Abelson, J.R.; Bellon, P.; Polycarpou, A.A.; Chevalier, J.P. Tribological behavior of hafnium diboride thin films. Surf. Coat. Technol. 2006, 201, 4317–4322. [Google Scholar] [CrossRef]
- Khor, K.A.; Yu, L.G.; Sundararajan, G. Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films 2005, 478, 232–237. [Google Scholar] [CrossRef]
- Rau, J.V.; Latini, A.; Generosi, A.; Rossi Albertini, V.; Ferro, D.; Teghil, R.; Barinov, S.M. Deposition and characterization of superhard biphasic ruthenium boride films. Acta Mater. 2009, 57, 673–681. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, F.V.; Novikov, A.V.; Sagalova, T.B.; Petrzhik, M.I.; Levashov, E.A.; Shtansky, D.V. A comparative study of microstructure, oxidation resistance, mechanical, and tribological properties of coatings in Mo-B-(N), Cr-B-(N) and Ti-B-(N) systems. Phys. Met. Metallogr. 2017, 118, 1136–1146. [Google Scholar] [CrossRef]
- Levashov, E.A.; Shtansky, D.V.; Kiryukhantsev-Korneev, P.V.; Petrzhik, M.I.; Tyurina, M.Y.; Sheveiko, A.N. Multifunctional nanostructured coatings: Formation, structure, and the uniformity of measuring their mechanical and tribological properties. Russ. Metall. 2010, 917–935. [Google Scholar] [CrossRef]
- Holzschuh, H. Deposition of Ti-B-N (single and multilayer) and Zr-B-N coatings by chemical vapor deposition techniques on cutting tools. Thin Solid Films 2004, 469, 92–98. [Google Scholar] [CrossRef]
- Jayaraman, S.; Gerbi, J.E.; Yang, Y.; Kim, D.Y.; Chatterjee, A.; Bellon, P.; Girolami, G.S.; Chevalier, J.P.; Abelson, J.R. HfB2 and Hf-B-N hard coatings by chemical vapor deposition. Surf. Coat. Technol. 2006, 200, 6629–6633. [Google Scholar] [CrossRef]
- Bazhin, A.I.; Goncharov, A.A.; Petukhov, V.V.; Radjabov, T.D.; Stupak, V.A.; Konovalov, V.A. Magnetron sputtering of a vanadium–diboride target in Ar+N2 gaseous mixtures. Vacuum 2006, 80, 918–922. [Google Scholar] [CrossRef]
- Holubar, P.; Jilek, M.; Sima, M. Present and possible future applications of superhard nanocomposite coatings. Surf. Coat. Technol. 2000, 133, 145–151. [Google Scholar] [CrossRef]
- Mitterer, C.; Losbichler, P.; Werner, W.S.M.; Störi, H.; Barounig, J. Sputter deposition of decorative coatings based on ZrB2 and ZrB12. Surf. Coat. Technol. 1992, 54, 329–334. [Google Scholar] [CrossRef]
- Wang, T.-G.; Liu, Y.; Zhang, T.; Kim, D.-I.; Kim, K.H. Influence of Nitrogen Flow Ratio on the Microstructure, Composition, and Mechanical Properties of DC Magnetron Sputtered Zr-B-O-N Films. J. Mater. Sci. Technol. 2012, 28, 981–991. [Google Scholar] [CrossRef]
- Tului, M.; Ruffini, F.; Arezzo, F.; Lasisz, S.; Znamirowski, Z.; Pawlowski, L. Some properties of atmospheric air and inert gas high-pressure plasma sprayed ZrB2 coatings. Surf. Coat. Technol. 2002, 151, 483–489. [Google Scholar] [CrossRef]
- Zhong, W.; Niu, Y.; Hu, C.; Li, H.; Zeng, Y.; Zheng, X.; Ren, M.; Sun, J. High temperature oxidation resistance of metal silicide incorporated ZrB2 composite coatings prepared by vacuum plasma spray. Ceram. Int. 2015, 41, 14868–14875. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, W.; Wang, S.; Chen, Z.-H.; Chen, H.-M. ZrB2 coating for the oxidation protection of carbon fiber reinforced silicon carbide matrix composites. Vacuum 2013, 96, 63–68. [Google Scholar] [CrossRef]
- Dong, Z.H.; Peng, X.; Wang, F.H. Oxidation of a ZrB2 coating fabricated on Ta-W alloy by electrophoretic deposition and laser melting. Mater. Lett. 2015, 148, 76–78. [Google Scholar] [CrossRef]
- Kaptay, C.; Kuznetsov, S.A. Electrochemical synthesis of refractory borides from molten salts. Plasmas Ions 1999, 2, 45–56. [Google Scholar] [CrossRef]
- Verkhoturov, A.D.; Podchernyaeva, I.A.; Konevtsov, L.A. Spark alloying using metals and ZrB2-based ceramics of tungsten-containing hard alloys for increasing serviceability. Surf. Eng. Appl. Electrochem. 2007, 43, 415–424. [Google Scholar] [CrossRef]
- Verkhoturov, A.D.; Gordienko, P.S.; IPodchernyaeva, A.; Konevtsov, L.A.; Panin, E.S. The formation of protective coatings on tungsten-containing hard alloys by electrospark alloying with metals and borides. Inorg. Mater. Appl. Res. 2011, 2, 180–185. [Google Scholar] [CrossRef]
- Sung, J.; Goedde, D.M.; Girolami, G.S.; Abelson, J.R. Remote-plasma chemical vapor deposition of conformal ZrB2 films at low temperature: A promising diffusion barrier for ultralarge scale integrated electronics. J. Appl. Phys. 2002, 91, 3904–3911. [Google Scholar] [CrossRef] [Green Version]
- Chapusot, V.; Pierson, J.F.; Lapostolle, F.; Billard, A. Arc-evaporated nanocomposite zirconium-based boronitride coatings. Mater. Chem. Phys. 2009, 114, 780–784. [Google Scholar] [CrossRef]
- Ming’e, W.; Guojia, M.; Xing, L.; Chuang, D. Morphology and Mechanical Properties of TiN Coatings Prepared with Different PVD Methods. Rare Met. Mater. Eng. 2016, 45, 3080–3084. [Google Scholar] [CrossRef]
- Chu, C.W.; Jang, J.S.C.; Chen, H.W.; Chuang, T.L. Enhanced wear resistance of the Cr-based thin film coating on micro drill by doping with W-C-N. Thin Sold Films 2009, 517, 5197–5201. [Google Scholar] [CrossRef]
- Lawal, J.; Kiryukhantsev-Korneev, P.; Matthews, A.; Leyland, A. Mechanical properties and abrasive wear behaviour of Al-based PVD amorphous/nanostructured coatings. Surf. Coat. Technol. 2017, 310, 59–69. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, F.V.; Sheveiko, A.N.; Komarov, V.A.; Blanter, M.S.; Skryleva, E.A.; Shirmanov, N.A.; Levashov, E.A.; Shtansky, D.V. Nanostructured Ti-Cr-B-N and Ti-Cr-Si-C-N coatings for hard-alloy cutting tools. Russ. J. Non Ferrous Met. 2011, 52, 311–318. [Google Scholar] [CrossRef]
- Wu, J.; Wu, B.H.; Ma, D.L.; Xie, D.; Wu, Y.P.; Chen, C.Z.; Li, Y.T.; Sun, H.; Huang, N.; Leng, Y.X. Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering (HPPMS). Surf. Coat. Technol. 2017, 315, 258–267. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sheveiko, A.N.; Petrzhik, M.I. Approaches to Increasing the Adhesion Strength of Hard Wear-Resistant Nanostructured Coatings Based on the Ti-B-(Cr, Si, C)-N System. Prot. Met. Phys. Chem. Surf. 2019, 55, 502–510. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Pierson, J.F.; Bychkova, M.Y.; Manakova, O.S.; Levashov, E.A.; Shtansky, D.V. Comparative Study of Sliding, Scratching, and Impact-Loading Behavior of Hard CrB2 and Cr-B-N Films. Tribol. Lett. 2016, 63, 44–55. [Google Scholar] [CrossRef]
- Audronis, M.; Leyland, A.; Matthews, A.; Kiryukhantsev-Korneev, F.V.; Shtansky, D.V.; Levashov, E.A. The Structure and Mechanical Properties of Ti-Si-B Coatings Deposited by DC and Pulsed-DC Unbalanced Magnetron Sputtering. Plasma Process. Polym. 2007, 4, 687–692. [Google Scholar] [CrossRef]
- Vančo, M.; Krmela, J.; Pešlová, F. The Use of PVD Coating on Natural Textile Fibers. Procedia Eng. 2016, 136, 341–345. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Grigoryan, A.S.; Toporkova, A.K.; Arkhipov, A.V.; Sheveyko, A.N.; Kiryukhantsev-Korneev, P.V. Modification of polytetrafluoroethylene implants by depositing TiCaPCON films with and without stem cells. Surf. Coat. Technol. 2011, 206, 1188–1195. [Google Scholar] [CrossRef]
- Wenbin, F.; Mingjiang, D.; Chunbei, W.; Mingchun, Z.; Liang, H.; Huijun, H.; Songsheng, L. Magnetron Sputtering Preparation and Properties of SiC/MoSi2 Oxidation Protective Coating for Carbon/Carbon Composites Prepared. Rare Met. Mater. Eng. 2016, 45, 2543–2548. [Google Scholar] [CrossRef] [Green Version]
- Shtansky, D.V.; Kiryukhantsev-Korneev, P.V.; Bashkova, I.A.; Sheveiko, A.N.; Levashov, E.A. Multicomponent nanostructured films for various tribological applications. Surf. Coat. Technol. 2010, 205, 728–739. [Google Scholar] [CrossRef]
- Tsai, D.-C.; Deng, M.-J.; Chang, Z.-C.; Kuo, B.-H.; Chen, E.-C.; Chang, S.-Y.; Shieu, F.-S. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering. J. Alloys Compd. 2015, 647, 179–188. [Google Scholar] [CrossRef]
- Lin, C.H.; Duh, J.G.; Yeh, J.W. Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter. Surf. Coat. Technol. 2007, 201, 6304–6308. [Google Scholar] [CrossRef]
- Iatsyuk, I.V.; Lemesheva, M.V.; Kiryukhantsev-Korneev, P.V.; Levashov, E.A. Structure and properties of ZrB2, ZrSiB and ZrAlSiB cathode materials and coatings obtained by their magnetron sputtering. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 347, p. 012028. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, F.V. Possibilities of glow discharge optical emission spectroscopy in the investigation of coatings. Russ. J. Non Ferrous Met. 2014, 55, 494–504. [Google Scholar] [CrossRef]
- Polyakov, M.N.; Morstein, M.; Maeder, X.; Nelis, T.; Lundin, D.; Wehrs, J.; Best, J.P.; Edwards, T.E.J.; Döbeli, M.; Michler, J. Microstructure-driven strengthening of TiB2 coatings deposited by pulsed magnetron sputtering. Surf. Coat. Technol. 2019, 368, 88–96. [Google Scholar] [CrossRef]
- González-Carmona, J.M.; Triviño, J.D.; Gómez-Ovalle, Á.; Ortega, C.; Alvarado-Orozco, J.M.; Sánchez-Sthepa, H.; Avila, A. Wear mechanisms identification using Kelvin probe force microscopy in TiN, ZrN and TiN/ZrN hard ceramic multilayers coatings. Ceram. Int. 2020, 46, 24592–24604. [Google Scholar] [CrossRef]
- Ighere, J.O.; Greaney, P.A. Characterizing Property of States: Effect of Defects on the Coefficient of Thermal Expansion and the Specific Heat Capacity of ZrB2. New J. Glass Ceram. 2020, 10, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Zaouali, M.; Lebrun, J.L.; Gergaud, P. X-ray diffraction determination of texture and internal stresses in magnetron PVD molybdenum thin films. Surf. Coat. Technol. 1991, 50, 5–10. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Xing, X.-J.; Jiang, X.-Y.; Wang, X.; Zhang, L.; Jian, X.; Mu, C.-H.; Han, T.-C.; Lu, H.-P.; Zhang, L.-J.; et al. Structural self-deterioration mechanism for zirconium diboride in an inert environment. Ceram. Int. 2021, in press. [Google Scholar] [CrossRef]
- Parakhonskiy, G.; Vtech, V.; Dubrovinskaia, N.; Caracas, R.; Dubrovinsky, L. Raman spectroscopy investigation of alpha boron at elevated pressures and temperatures. Solid State Commun. 2013, 154, 34–39. [Google Scholar] [CrossRef]
- Zhong, B.; Zhang, T.; Huang, X.X.; Wen, G.W.; Chen, J.W.; Wang, C.J.; Huang, Y.D. Fabrication and Raman scattering behavior of novel turbostratic BN thin films. Mater. Lett. 2015, 151, 130–133. [Google Scholar] [CrossRef]
- Pokropivny, V.; Kovrygin, S.; Gubanov, V.; Lohmus, R.; Lohmus, A.; Vesi, U. Ab-initio calculation of Raman spectra of single-walled BN nanotubes. Physica E 2008, 40, 2339–2342. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, T.G.; Yan, B.; Qi, H.J.; Guo, Y.Y.; Xu, S.S. Study on the microstructure and mechanical properties of Zr-B-(N) tool coatings prepared by hybrid coating system. Procedia Manuf. 2018, 26, 806–817. [Google Scholar] [CrossRef]
- Mitterer, C.; Uebleis, A.; Ebner, R. Sputter deposition of wear resistant coatings within the system Zr-B-N. J. Mater. Sci. Eng. 1991, 140, 670–675. [Google Scholar] [CrossRef]
- Brandstetter, E.; Mitterer, C.; Ebner, R. A transmission electron microscopy study on sputtered Zr-B and Zr-B-N films. Thin Solid Films 1991, 201, 123–135. [Google Scholar] [CrossRef]
- Jimenez, O.; Audronis, M.; Leyland, A.; Flores, M.; Rodriguez, E.; Kanakis, K.; Matthews, A. Small grain size zirconium-Based coatings deposited by magnetron sputtering at low temperatures. Thin Solid Films 2015, 591, 149–155. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Kulinich, S.A.; Levashov, E.A.; Sheveiko, A.N.; Kiriuhancev, F.V.; Moore, J.J. Localized Deformation of Multicomponent Thin Films. Thin Solid Films 2002, 420, 330–337. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wearing 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Levashov, E.A.; Petrzhik, M.I.; Shtansky, D.V.; Kiryukhantsev-Korneev, F.V.; Sheveiko, A.N.; Valiev, R.Z.; Gunderov, D.V.; Prokoshkin, S.D.; Korotitskiy, A.V.; Smolin, A.Y. Nanostructured Titanium Alloys and Multicomponent Bioactive Films Mechanical Behavior at Indentation. Mater. Sci. Eng. 2013, 570, 51–62. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Shvyndina, N.V.; Bondarev, A.; Levashov, E.A. Structure and properties of tribological coatings in Cu-B system. Phys. Met. Metal. 2014, 115, 716–722. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Pierson, J.F.; Kuptsov, K.A.; Shtansky, D.V. Hard Cr-Al-Si-B-(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target. Appl. Surf. Sci. 2014, 314, 104–111. [Google Scholar] [CrossRef]
- Musil, J. Hard and superhard nanocomposite coatings. Surf. Coat. Technol. 2000, 125, 322–330. [Google Scholar] [CrossRef]
- Okamoto, S.; Nakazono, Y.; Otsuka, K.; Shimoitani, Y.; Takada, J. Mechanical properties of WC/Co cemented carbide with larger WC grain size. Mater. Charact. 2005, 55, 281–287. [Google Scholar] [CrossRef]
- Ürgen, M.; Çakir, A.F.; Eryilmaz, O.L.; Mitterer, C. Corrosion of zirconium boride and zirconium boron nitride coated steels. Surf. Coat. Technol. 1995, 71, 60–66. [Google Scholar] [CrossRef]
- Srinath, A.; von Fieandt, K.; Lindblad, R.; Fritze, S.; Korvela, M.; Petersson, J.; Lewin, E.; Nyholm, L. Influence of the nitrogen content on the corrosion resistances of multicomponent AlCrNbYZrN coatings. Corros. Sci. 2021, 188, 109557. [Google Scholar] [CrossRef]
- Hsueh, H.-T.; Shen, W.-J.; Tsai, M.-H.; Yeh, J.-W. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100–xNx. Surf. Coat. Technol. 2012, 206, 4106–4112. [Google Scholar] [CrossRef]
- Mousavi, H.; Khodadadi, J.; Kurdestany, J.M.; Yarmohammadi, Z. Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers. Phys. Lett. A 2016, 380, 3823–3827. [Google Scholar] [CrossRef]
- Kameneva, A.; Kichigin, V.; Lobov, N.; Kameneva, N. Data on the effect of structure, elemental and phase composition gradient of nitride multilayer coatings on corrosion protection of different substrates in 3% NaCl and 5% NaOH solutions. Data Brief 2019, 27, 104796. [Google Scholar] [CrossRef]
- Sharma, B.; Thapa, A.; Sarkar, A. Ab-initio study of LD-HfO2, Al2O3, La2O3 and h-BN for application as dielectrics in MTJ memory device. Superlattices Microstruct. 2021, 150, 106753. [Google Scholar] [CrossRef]
- Sarkarat, M.; Lanagan, M.; Ghosh, D.; Lottes, A.; Budd, K.; Rajagopalan, R. Improved thermal conductivity and AC dielectric breakdown strength of silicone rubber/BN composites. Compos. Part C 2020, 2, 100023. [Google Scholar] [CrossRef]
- Kirk, R.E.; Othmer, D.F. Encyclopedia of Chemical Technology, 4th ed.; ACS Publications: Washington, DC, USA, 2001; Volume 4, p. 578. [Google Scholar]
- Thörnberg, J.; Bakhit, B.; Palisaitis, J.; Hellgren, N.; Hultman, L.; Greczynski, G.; Persson, P.O.Å.; Petrov, I.; Rosen, J. Improved oxidation properties from a reduced B content in sputter-deposited TiBx thin films. Surf. Coat. Technol. 2021, 420, 127353. [Google Scholar] [CrossRef]
- Bakhit, B.; Palisaitis, J.; Thörnberg, J.; Rosen, J.; Persson, P.O.Å.; Hultman, L.; Petrov, I.; Greene, J.E.; Greczynski, G. Improving the high-temperature oxidation resistance of TiB2 thin films by alloying with Al. Acta Mater. 2020, 196, 677–689. [Google Scholar] [CrossRef]
- Podobeda, L.G.; Tapsuk, A.K.; Buravov, A.D. Oxidation of boron nitride under nonisothermal conditions. Powder Metall. Met. Ceram. 1976, 15, 696–698. [Google Scholar] [CrossRef]
- Carminati, P.; Jacques, S.; Rebillat, F. Oxidation/corrosion of BN-based coatings as prospective interphases for SiC/SiC composites. J. Eur. Ceram. Soc. 2021, 41, 3120–3131. [Google Scholar] [CrossRef]
№ | Atmosphere | Composition, at.% | Mechanical Properties | f | Vw, × 10−6 mm3N−1m−1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Zr | B | N | H, ΓΠa | E, ΓΠa | H/E | H3/E2, ΓΠa | W, % | ||||
1 | 100%Ar | 24 ± 2 | 76 ± 2 | - | 22 | 342 | 0.064 | 0.091 | 62 | 0.9 | 8.2 |
2 | 85%Ar + 15%N2 | 18 ± 2 | 61 ± 2 | 21 ± 2 | 23 | 266 | 0.086 | 0.172 | 72 | 0.4 | 1.3 |
Sample | Atmosphere | 3.5% NaCl | 1 N H2SO4 | ||
---|---|---|---|---|---|
E, mV | Icorr, µA/cm2 | E, mV | Icorr, µA/cm2 | ||
1 | Ar | −131 | 0.24 | −250 | 8.7 |
2 | Ar + 15%N2 | −47 | 0.07 | −216 | 1.7 |
Substrate WC–6%Co | −39 | 1.15 | −115 | 33.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiryukhantsev-Korneev, P.; Sytchenko, A.; Kaplanskii, Y.; Sheveyko, A.; Vorotilo, S.; Levashov, E. Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings. Metals 2021, 11, 1194. https://doi.org/10.3390/met11081194
Kiryukhantsev-Korneev P, Sytchenko A, Kaplanskii Y, Sheveyko A, Vorotilo S, Levashov E. Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings. Metals. 2021; 11(8):1194. https://doi.org/10.3390/met11081194
Chicago/Turabian StyleKiryukhantsev-Korneev, Philipp, Alina Sytchenko, Yuriy Kaplanskii, Alexander Sheveyko, Stepan Vorotilo, and Evgeny Levashov. 2021. "Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings" Metals 11, no. 8: 1194. https://doi.org/10.3390/met11081194
APA StyleKiryukhantsev-Korneev, P., Sytchenko, A., Kaplanskii, Y., Sheveyko, A., Vorotilo, S., & Levashov, E. (2021). Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings. Metals, 11(8), 1194. https://doi.org/10.3390/met11081194