A Study on Determining Weld Joint Hardening and a Quality Evaluation Algorithm for 9% Nickel Weld Joints Using the Dilution Ratio of the Base Material in Fiber Laser Welding
Abstract
:1. Introduction
2. Experimental Works
3. Results
3.1. Penetration Geometry
3.2. Weld Joint Hardness
3.3. Measurement of Weld Joint Dilution Ratio
4. Discriminant of Quality Characteristics of 9% Ni Steel
4.1. Weld Joint Hardening according to Dilution Ratio
4.2. Discriminant Analysis
5. Optimization of Fiber Laser Welding of 9% Ni Steel
5.1. Development of Mathematical Model Welding Factors
5.2. Optimization for the Welding Process of 9% Ni Steel
6. Conclusions
- (1)
- The appropriate weldability of a weld joint was confirmed by measuring the penetration shape, mechanical strength, penetration area, etc. of a weld joint derived from the fiber laser welding test. It was found that the hardening of a weld joint depends on the energy density applied to the weld joint and the ratio of an area mixed with foreign substances after melting. In addition, when the weld joint hardening index is 17.7% or more, the group that needs to consider quality deterioration for weld joint hardening is classified. Thus, quality deterioration characteristics, according to the dilution ratio, were established.
- (2)
- To determine the weld joint hardening phenomena of 9% Ni steel caused by welding process variables, the quality deterioration characteristics were learned in the SVM technique and it was determined whether the group with quality deterioration could be accurately identified. As a result, it was confirmed that a group with the hardening of a weld joint was predicted 100% repeatedly. This result was used as a procedure to determine the deterioration of weld joint quality.
- (3)
- A response surface method mathematical prediction model was developed to apply an objective function to optimize the welding process variables where quality deterioration occurs. By entering the raw data of weld joint hardening into the optimization algorithm created by the objective function and constraint conditions, the quality degradation characteristics contained in the process variables were supplemented.
- (4)
- The predicted welding factors were calculated by entering the input variables supplemented for their quality degradation characteristics into the response surface mathematical model. By re-entering the corresponding output variables into the discrimination system, all the raw data where the hardening of a weld joint was expected, showed no quality deterioration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IMO. Regulations to Reduce Air Pollution from Ships and the Review of Fuel Oil Availability; IMO: London, UK, 2016. [Google Scholar]
- Kim, K.; Park, K.; Roh, G.; Ghun, K. Case Study on Boil-Off Gas (BOG) Minimization for LNG Bunkering Vessel Using Energy Storage System(ESS). J. Mar. Sci. Eng. 2019, 7, 130. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H. Analysis of the Characteristics of Reformer for the Application of Hydrogen Fuel Cell Systems to LNG Fueled Ships. J. Korean Soc. Mar. Environ. Saf. 2021, 27, 135–144. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, X.; Zuo, T.; Wang, W.; Song, X. A systematic literature review on port LNG bunkering station. Transp. Res. Part D Transp. Environ. 2021, 91, 102704. [Google Scholar] [CrossRef]
- Chang, W.S.; Kim, K.C.; Kim, Y.C.; Kim, S.R.; Kim, W.S. Ni alloy welding consumables for 9% Nickel steel. Korean Weld. Join Soc. 1998, 16, 25–37. [Google Scholar]
- ASTM E23. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. Am. Soc. Test. Mater. 2007, 7a, 1–6. [Google Scholar]
- Park, M.; Kim, J.; Pyo, C.; Son, J.; Kim, J. A Study on the Algorithm of Quality Evaluation for Fiber Laser Welding Process of ASTM A553-1 (9% Nickel Steel) Using Determination of Solidification Crack Susceptibility. Materials 2020, 13, 5617. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.; Oh, W.; Lee, B.; Lee, C.; Na, H.; Choi, J.; Kim, I. A Study on Optimization of Fillet in Laser Welding Process for 9% Ni Steel Using Gradient-Based Optimization Algorithm. J. Weld. Join. 2020, 38, 485–492. [Google Scholar] [CrossRef]
- Na, K.; Lee, C.; Park, J.; Cho, M. A Comparison of Hot Cracking in GTAW and FCAW by Applying Alloy 625 Filler Materials of 9% Ni Steel. J. Weld. Join. 2019, 37, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Park, J.; Lee, J.; Kim, M. Study on the Initial Design of an LNG Fuel Tank using 9 wt.% Nickel Steel for Ships and Performance Evaluation of the Welded Joint. J. Weld. Join. 2019, 37, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, I.; Suzuki, M.; Matsuda, Y.; Tagawa, H.; Matsui, K.; Shimada, S. Fracture toughness of 9% Ni steel and safety of LNG storage tank against brittle fracture. Nippon Kokan Tech. Rep. 1984, 42, 2–10. [Google Scholar]
- Liu, X.; Athanasiou, C.E.; Padture, N.P.; Sheldon, B.W.; Gao, H. A machine learning approach to fracture mechanics problems. J. Acta Mater. 2020, 190, 105–112. [Google Scholar] [CrossRef]
- Oh, D.J.; Lee, J.M.; Noh, B.J.; Kim, W.S.; Ando, R.; Matsumoto, T.; Kim, M.H. Investigation of fatigue performance of low temperature alloys for liquefied natural gas storage tanks. J. Mech. Eng. 2015, 229, 1–15. [Google Scholar] [CrossRef]
- Kourshid, A.F.M.; Ghanem, M. Using the welding parameters to improve the mechanical properties of Liquefied Natural Gas storage tank welded joint. IOSR J. Mech. Civ. Eng. 2012, 4, 32–39. [Google Scholar] [CrossRef]
- Technical Report 9% Nickel Steel: For Use at Cryogenic Temperatures; ArcelorMittal: East Chicago, IN, USA, 2010.
- Kobelco’s Welding Consumables for LNG Storage Tanks Made of 9% Ni Steel. Kobelco Weld. 2011, 14, 3–8.
- Paura, R. IPG Fiber lasers: What’s new in applications for fabricators. In Proceedings of the ALAW Laser Application Workshop, Plymouth, MI, USA, 13–14 May 2009. [Google Scholar]
- Kim, Z.H. A Comparative Study of Classification Techniques Using Forest Cover Type Data: Discriminant Analysis, Logistic Regression, Neural Network, Decision Tree. Unpublished Master’s Thesis, Chung-Ang University, Seoul, Korea, 2012. [Google Scholar]
- Amrine, D.E.; White, B.J.; Larson, R.L. Comparison of classification algorithms to predict outcomes of feedlot cattle identified and treated for bovine respiratory disease. Comput. Electron. Agric. 2014, 105, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Knowles, J.D.; Corne, D.W. Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 2000, 8, 149–172. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Lect. Notes Comput. Sci. 2000, 1917, 849–858. [Google Scholar]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldjuizen, D.A.V.; Lamont, G.B. On measuring multiobjective evolutionary algorithm performance. Evol. Comput. 2000, 1, 204–211. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A. A fast and elitist multi objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
Component | C | Si | Mn | S | P | Ni | Fe |
---|---|---|---|---|---|---|---|
Percentage (wt.%) | 0.05 | 0.67 | 0.004 | 0.003 | 0.25 | 9.02 | Bal. |
Material | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|---|
A553-1 | 651.6 | 701.1 | 26.6 | 243 |
Parameter | Symbol | −1 | 0 | 1 |
---|---|---|---|---|
Laser Power (kW) | 3.0 | 4.0 | 5.0 | |
Defocusing (mm) | −0.5 | 0.0 | 0.5 | |
Welding Speed (meter/minute, m/min) | 0.5 | − | 0.8 | |
Fixed Parameter | Wavelength: 1070 nm | |||
Optical Fiber Diameter: 200 µm | ||||
Shielding Gas Flow Rate: Ar 18 L/min, (L/min) |
Case No. | L | D | S | Case No. | L | D | S |
---|---|---|---|---|---|---|---|
1 | 3.0 | −0.5 | 0.5 | 10 | 3.0 | −0.5 | 0.8 |
2 | 3.0 | 0.0 | 0.5 | 11 | 3.0 | 0.0 | 0.8 |
3 | 3.0 | 0.5 | 0.5 | 12 | 3.0 | 0.5 | 0.8 |
4 | 4.0 | −0.5 | 0.5 | 13 | 4.0 | −0.5 | 0.8 |
5 | 4.0 | 0.0 | 0.5 | 14 | 4.0 | 0.0 | 0.8 |
6 | 4.0 | 0.5 | 0.5 | 15 | 4.0 | 0.5 | 0.8 |
7 | 5.0 | −0.5 | 0.5 | 16 | 5.0 | −0.5 | 0.8 |
8 | 5.0 | 0.0 | 0.5 | 17 | 5.0 | 0.0 | 0.8 |
9 | 5.0 | 0.5 | 0.5 | 18 | 5.0 | 0.5 | 0.8 |
Test No. | Penetration Width (mm) | Penetration Depth (mm) | Penetration Geometry | ||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | Average | 1st | 2nd | 3rd | Average | ||
1 | 3.93 | 3.90 | 3.90 | 3.91 | 6.49 | 6.47 | 6.51 | 6.49 | |
2 | 3.19 | 3.18 | 3.17 | 3.18 | 6.64 | 6.66 | 6.64 | 6.65 | |
3 | 4.73 | 4.72 | 4.69 | 4.71 | 7.21 | 7.22 | 7.15 | 7.19 | |
4 | 5.82 | 5.86 | 5.84 | 5.84 | 8.52 | 8.51 | 8.55 | 8.53 | |
5 | 5.48 | 5.49 | 5.49 | 5.49 | 8.17 | 8.15 | 8.15 | 8.16 | |
6 | 3.61 | 3.71 | 3.5 | 3.61 | 7.84 | 7.82 | 7.79 | 7.82 | |
7 | 6.59 | 6.58 | 6.58 | 6.58 | 9.11 | 9.12 | 9.11 | 9.11 | |
8 | 6.54 | 6.55 | 6.55 | 6.55 | 9.49 | 9.51 | 9.53 | 9.51 | |
9 | 7.01 | 7.03 | 7.04 | 7.03 | 10.09 | 10.09 | 10.11 | 10.1 | |
10 | 2.51 | 2.47 | 2.37 | 2.45 | 4.86 | 4.78 | 4.79 | 4.81 | |
11 | 2.21 | 2.28 | 2.32 | 2.27 | 4.95 | 4.89 | 4.95 | 4.93 | |
12 | 3.26 | 3.27 | 3.22 | 3.25 | 5.19 | 5.23 | 5.21 | 5.21 | |
13 | 3.25 | 3.23 | 3.17 | 3.22 | 5.49 | 5.48 | 5.44 | 5.47 | |
14 | 3.22 | 3.30 | 3.20 | 3.24 | 6.25 | 6.24 | 6.29 | 6.26 | |
15 | 2.82 | 2.84 | 2.86 | 2.84 | 5.43 | 5.44 | 5.54 | 5.47 | |
16 | 4.94 | 4.97 | 4.91 | 4.94 | 6.18 | 6.24 | 6.21 | 6.21 | |
17 | 4.25 | 4.19 | 4.21 | 4.22 | 7.26 | 7.24 | 7.24 | 7.25 | |
18 | 5.84 | 5.83 | 5.85 | 5.84 | 7.47 | 7.41 | 7.44 | 7.44 |
Test No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Upper (HV) | 1st | 266.6 | 296.4 | 283.3 | 277.4 | 314.6 | 270.7 | 314.6 | 308.3 | 283.7 |
2nd | 262.1 | 300.0 | 279.0 | 279.8 | 305.9 | 277.1 | 312.7 | 301.1 | 287.5 | |
3rd | 264.9 | 294.6 | 282.6 | 276.1 | 299.2 | 274.2 | 306.0 | 303.3 | 287.1 | |
4th | 262.3 | 293.6 | 282.7 | 287.3 | 300.6 | 269.5 | 313.7 | 302.8 | 280.6 | |
5th | 264.8 | 291.1 | 280.9 | 284.7 | 311.4 | 269.0 | 314.7 | 302.8 | 284.6 | |
Avg. | 264.2 | 295.2 | 281.7 | 281.1 | 306.3 | 272.1 | 312.4 | 303.7 | 284.7 | |
Bottom (HV) | 1st | 343.9 | 345.7 | 346.3 | 358.0 | 351.5 | 349.8 | 355.3 | 346.6 | 350.4 |
2nd | 344.9 | 345.6 | 344.9 | 358.3 | 350.6 | 349.5 | 356.2 | 348.1 | 350.0 | |
3rd | 345.0 | 346.5 | 346.4 | 358.1 | 349.5 | 350.5 | 356.4 | 347.4 | 350.4 | |
4th | 345.2 | 346.4 | 345.5 | 359.1 | 350.9 | 348.7 | 354.4 | 348.1 | 350.0 | |
5th | 345.3 | 345.9 | 346.2 | 356.7 | 350.6 | 349.7 | 355.2 | 346.5 | 350.6 | |
Avg. | 344.9 | 346.0 | 345.8 | 358.1 | 350.6 | 349.6 | 355.5 | 347.4 | 350.3 | |
HAZ (HV) | 1st | 374.1 | 379.6 | 379.8 | 384.1 | 382.4 | 376.1 | 386.3 | 385.4 | 377.5 |
2nd | 373.4 | 380.8 | 379.9 | 384.1 | 382.8 | 376.5 | 386.3 | 385.4 | 377.4 | |
3rd | 373.1 | 379.8 | 380.4 | 384.4 | 383.4 | 376.5 | 386.8 | 385.0 | 376.3 | |
4th | 373.2 | 380.0 | 381.0 | 384.0 | 382.8 | 376.3 | 386.0 | 385.6 | 378.5 | |
5th | 373.6 | 380.0 | 379.8 | 384.7 | 382.4 | 377.2 | 386.6 | 385.0 | 377.6 | |
6th | 373.7 | 379.6 | 380.6 | 384.3 | 382.7 | 376.8 | 385.9 | 385.8 | 378.5 | |
Avg. | 373.5 | 380.0 | 380.3 | 384.3 | 382.7 | 376.6 | 386.3 | 385.4 | 377.7 | |
Test No. | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
Upper (HV) | 1st | 289.6 | 295.3 | 280.9 | 279.2 | 279.1 | 278.2 | 276.5 | 280.3 | 277.6 |
2nd | 284.2 | 295.6 | 278.1 | 276.2 | 276.1 | 279.8 | 275.7 | 280.4 | 280.9 | |
3rd | 274.6 | 293.0 | 272.8 | 282.4 | 273.7 | 291.8 | 275.7 | 285.7 | 271.5 | |
4th | 284.3 | 289.3 | 276.3 | 277.4 | 272.8 | 282.1 | 274.1 | 279.6 | 274.9 | |
5th | 281.8 | 294.2 | 279.5 | 283.2 | 276.1 | 284.0 | 274.0 | 278.3 | 278.6 | |
Avg. | 282.9 | 293.5 | 277.5 | 279.7 | 275.5 | 283.2 | 275.2 | 280.9 | 276.7 | |
Bottom (HV) | 1st | 339.8 | 340.1 | 340.3 | 342.2 | 342.2 | 341.6 | 342.9 | 346.8 | 349.2 |
2nd | 340.0 | 339.3 | 339.7 | 343.1 | 342.7 | 341.1 | 343.3 | 347.5 | 348.5 | |
3rd | 340.1 | 339.5 | 340.5 | 341.2 | 342.8 | 341.6 | 342.2 | 345.9 | 348.5 | |
4th | 339.2 | 339.1 | 339.8 | 341.1 | 343.2 | 342.0 | 342.7 | 347.1 | 348.1 | |
5th | 340.4 | 339.1 | 340.2 | 341.5 | 343.5 | 341.7 | 342.4 | 346.4 | 347.2 | |
Avg. | 339.9 | 339.4 | 340.1 | 341.8 | 342.9 | 341.6 | 342.7 | 346.7 | 348.3 | |
HAZ (HV) | 1st | 372.4 | 371.4 | 372.6 | 373.0 | 373.6 | 371.9 | 375.7 | 381.4 | 375.9 |
2nd | 371.9 | 371.8 | 371.8 | 373.2 | 373.4 | 372.8 | 375.5 | 381.2 | 376.3 | |
3rd | 373.0 | 370.8 | 371.7 | 372.6 | 373.5 | 371.6 | 376.0 | 381.9 | 376.2 | |
4th | 371.5 | 371.3 | 372.3 | 373.0 | 374.0 | 371.8 | 375.3 | 373.0 | 374.9 | |
5th | 371.8 | 371.3 | 371.2 | 373.6 | 372.6 | 372.5 | 375.6 | 373.8 | 374.9 | |
6th | 371.5 | 371.2 | 372.7 | 372.8 | 373.1 | 372.0 | 374.9 | 372.4 | 375.8 | |
Avg. | 372.0 | 371.3 | 372.1 | 373.1 | 373.4 | 372.1 | 375.5 | 377.3 | 375.7 |
Test No. | Avg. Area Upper (mm2) | Avg. Area Bottom (mm2) | Dilution Ratio (%) | Test No. | Avg. Area Upper (mm2) | Avg. Area Bottom (mm2) | Dilution Ratio (%) |
---|---|---|---|---|---|---|---|
1 | 6.38 | 1.45 | 18.53 | 10 | 3.00 | 0.62 | 17.20 |
2 | 5.59 | 1.06 | 15.99 | 11 | 2.93 | 0.62 | 17.38 |
3 | 8.85 | 1.81 | 16.97 | 12 | 4.37 | 0.91 | 17.16 |
4 | 12.40 | 3.01 | 19.56 | 13 | 4.62 | 0.95 | 17.01 |
5 | 11.49 | 2.40 | 17.30 | 14 | 5.12 | 1.14 | 18.14 |
6 | 6.99 | 1.64 | 18.98 | 15 | 4.05 | 0.79 | 16.35 |
7 | 15.63 | 3.09 | 16.52 | 16 | 7.67 | 1.75 | 18.61 |
8 | 15.86 | 3.31 | 17.28 | 17 | 8.01 | 1.62 | 16.80 |
9 | 18.19 | 3.93 | 17.77 | 18 | 11.17 | 2.46 | 18.05 |
Test No. | Hardness Difference (HV) | Dilution Ratio (%) | Weld Joint Hardening | Test No. | Hardness Difference (HV) | Dilution Ratio (%) | Weld Joint Hardening |
---|---|---|---|---|---|---|---|
1 | 28.7 | 18.53 | Regard | 10 | 32.1 | 17.20 | Regardless |
2 | 34.0 | 15.99 | Regardless | 11 | 31.9 | 17.38 | Regardless |
3 | 34.4 | 16.97 | Regardless | 12 | 32.0 | 17.16 | Regardless |
4 | 26.2 | 19.56 | Regard | 13 | 31.3 | 17.01 | Regardless |
5 | 32.1 | 17.30 | Regardless | 14 | 30.5 | 18.14 | Regard |
6 | 26.9 | 18.98 | Regard | 15 | 30.5 | 16.35 | Regardless |
7 | 30.8 | 16.52 | Regardless | 16 | 32.8 | 18.61 | Regard |
8 | 38.0 | 17.28 | Regardless | 17 | 30.6 | 16.80 | Regardless |
9 | 27.4 | 17.77 | Regard | 18 | 27.4 | 18.05 | Regard |
Test No. | L | D | S | PW | PD | HU | HB | HH | Di | Group |
---|---|---|---|---|---|---|---|---|---|---|
1 | 3.0 | −0.5 | 0.5 | 3.91 | 6.49 | 264.2 | 344.9 | 373.5 | 18.53 | Regard |
2 | 3.0 | 0.0 | 0.5 | 3.18 | 6.65 | 295.2 | 346.0 | 380.0 | 15.99 | Regardless |
3 | 3.0 | 0.5 | 0.5 | 4.71 | 7.19 | 281.7 | 345.8 | 380.3 | 16.97 | Regardless |
4 | 4.0 | −0.5 | 0.5 | 5.84 | 8.53 | 281.1 | 358.1 | 384.3 | 19.56 | Regard |
5 | 4.0 | 0.0 | 0.5 | 5.49 | 8.16 | 306.3 | 350.6 | 382.7 | 17.30 | Regardless |
6 | 4.0 | 0.5 | 0.5 | 3.61 | 7.82 | 272.1 | 349.6 | 376.6 | 18.98 | Regard |
7 | 5.0 | −0.5 | 0.5 | 6.58 | 9.11 | 312.4 | 355.5 | 386.3 | 16.52 | Regardless |
8 | 5.0 | 0.0 | 0.5 | 6.55 | 9.51 | 303.7 | 347.4 | 385.4 | 17.28 | Regardless |
9 | 5.0 | 0.5 | 0.5 | 7.03 | 10.1 | 284.7 | 350.3 | 377.7 | 17.77 | Regard |
10 | 3.0 | −0.5 | 0.8 | 2.45 | 4.81 | 282.9 | 339.9 | 372.0 | 17.20 | Regardless |
11 | 3.0 | 0.0 | 0.8 | 2.27 | 4.93 | 293.5 | 339.4 | 371.3 | 17.38 | Regardless |
12 | 3.0 | 0.5 | 0.8 | 3.25 | 5.21 | 277.5 | 340.1 | 372.1 | 17.16 | Regardless |
13 | 4.0 | −0.5 | 0.8 | 3.22 | 5.47 | 279.7 | 341.8 | 373.1 | 17.01 | Regardless |
14 | 4.0 | 0.0 | 0.8 | 3.24 | 6.26 | 275.5 | 342.9 | 373.4 | 18.14 | Regard |
15 | 4.0 | 0.5 | 0.8 | 2.84 | 5.47 | 283.2 | 341.6 | 372.1 | 16.35 | Regardless |
16 | 5.0 | −0.5 | 0.8 | 4.94 | 6.21 | 275.2 | 342.7 | 375.5 | 18.61 | Regard |
17 | 5.0 | 0.0 | 0.8 | 4.22 | 7.25 | 280.9 | 346.7 | 377.3 | 16.80 | Regardless |
18 | 5.0 | 0.5 | 0.8 | 5.84 | 7.44 | 276.7 | 348.3 | 375.7 | 18.05 | Regard |
Test No. | Measured Group | Predicted Group | Test No. | Measured Group | Predicted Group |
---|---|---|---|---|---|
1 | 1 | 1(1.00) | 10 | 0 | 0(0.00) |
2 | 0 | 0(0.00) | 11 | 0 | 0(0.00) |
3 | 0 | 0(0.01) | 12 | 0 | 0(0.01) |
4 | 1 | 1(1.00) | 13 | 0 | 0(0.01) |
5 | 0 | 0(0.00) | 14 | 1 | 1(0.95) |
6 | 1 | 1(1.00) | 15 | 0 | 0(0.00) |
7 | 0 | 0(0.00) | 16 | 1 | 1(1.00) |
8 | 0 | 0(0.00) | 17 | 0 | 0(0.01) |
9 | 1 | 1(0.99) | 18 | 1 | 1(0.96) |
Design Parameter | SE (Standard Error) | R2 (Coefficient of Determination, %) |
---|---|---|
PW | 0.769 | 86.4 |
PD | 0.423 | 96.3 |
HU | 10.83 | 71.1 |
HB | 2.847 | 84.4 |
HH | 2.541 | 80.7 |
Di | 0.568 | 83.2 |
Optimal Method | MOO (Multi-Objective Optimization) | |
---|---|---|
Range of Local Parameters | L (Laser Power) | [−0.5 ≤ Input ≤ +0.5] kW |
D (Defocusing) | [−0.25 ≤ Input ≤ +0.25] mm | |
S (Welding Speed) | [−0.15 ≤ Input ≤ +0.15] m/min | |
Range of Constraints | Di (Dilution Ratio) | Di ≤ 17.7% |
Fitness Factor | Population Size | 50, 60, 70, 80, 90, 100 |
Solver | Constrained nonlinear minimization | |
Algorithm | Trust region reflective algorithm | |
Derivatives | Gradient supplied |
Test No. | Original | Modified | Welding Factors | Group | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | D | S | L | D | S | PW | PD | HU | HB | HH | Di | ||
4 | 4.0 | −5.0 | 0.5 | 3.91 | −0.51 | 0.51 | 5.0 | 7.7 | 289.9 | 350.4 | 382.4 | 16.7 | Regardless |
14 | 4.0 | 0.0 | 0.8 | 3.84 | -0.08 | 0.86 | 2.5 | 5.3 | 298.0 | 343.5 | 376.0 | 16.6 | Regardless |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Kim, J.; Pyo, C.; Kim, J.; Chun, K. A Study on Determining Weld Joint Hardening and a Quality Evaluation Algorithm for 9% Nickel Weld Joints Using the Dilution Ratio of the Base Material in Fiber Laser Welding. Metals 2021, 11, 1308. https://doi.org/10.3390/met11081308
Park M, Kim J, Pyo C, Kim J, Chun K. A Study on Determining Weld Joint Hardening and a Quality Evaluation Algorithm for 9% Nickel Weld Joints Using the Dilution Ratio of the Base Material in Fiber Laser Welding. Metals. 2021; 11(8):1308. https://doi.org/10.3390/met11081308
Chicago/Turabian StylePark, Minho, Jisun Kim, Changmin Pyo, Jaewoong Kim, and Kwangsan Chun. 2021. "A Study on Determining Weld Joint Hardening and a Quality Evaluation Algorithm for 9% Nickel Weld Joints Using the Dilution Ratio of the Base Material in Fiber Laser Welding" Metals 11, no. 8: 1308. https://doi.org/10.3390/met11081308
APA StylePark, M., Kim, J., Pyo, C., Kim, J., & Chun, K. (2021). A Study on Determining Weld Joint Hardening and a Quality Evaluation Algorithm for 9% Nickel Weld Joints Using the Dilution Ratio of the Base Material in Fiber Laser Welding. Metals, 11(8), 1308. https://doi.org/10.3390/met11081308