Dual-Layer Corrosion-Resistant Conversion Coatings on Mg-9Li Alloy via Hydrothermal Synthesis in Deionized Water
Abstract
:1. Introduction
2. Experimental
2.1. Synthesizing Process of Hydrothermal Conversion Coating
2.2. Microstructure Characterizations
2.3. Performance Evaluation
3. Results and Discussion
3.1. Microstructure Characteristic
3.2. Anti-Corrosion Performance
3.3. Adhesion Property
3.4. Anti-Corrosion Mechanism of Hydrothermal Conversion Coating
4. Conclusions
- The hydrothermal conversion coating synthesized on the Mg-9Li alloy is mainly composed of magnesium hydroxide (Mg(OH)2) and a small amount of lithium hydroxide (LiOH), which present sufficient corrosion prevention performance in NaCl solution.
- The coated sample prepared at 140 °C has a uniform, compact and thick hydrothermal conversion coating. Additionally, the 140 °C-coated sample has the best anti-corrosion performance among the uncoated and coated samples, showing the lowest corrosion current density and hydrogen evolution rate.
- The hydrothermal conversion coating has a special dual-layer structure which is composed of an external stacking-structure surface layer and inner compact layer.
- The improvement of the hydrophobicity caused by the stacking structure of the surface layer, as well as the barrier effect of inner compact layer of the hydrothermal conversion coating, endow its excellent corrosion prevention efficiency in the corrosive solution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Zhang, M.L.; Wu, R.Z. Microstructure and properties of Mg-8Li-1Al-1Ce alloy. Mater. Lett. 2008, 62, 1846–1848. [Google Scholar] [CrossRef]
- Xia, Q.X.; Zhang, D.J.; Li, D.Q.; Jiang, Z.H.; Yao, Z.P. Preparation of the plasma electrolytic oxidation coating on Mg-Li alloy and its thermal control performance. Surf. Coat. Technol. 2019, 369, 252–256. [Google Scholar] [CrossRef]
- Crawford, P.; Barrosa, R.; Mendez, J.; Foyos, J.; Es-Said, O.S. On the transformation characteristics of LA141A (Mg-Li-Al) alloy. J. Mater. Process. Technol. 1996, 56, 108–118. [Google Scholar] [CrossRef]
- Al-Samman, T. Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy. Acta Mater. 2009, 57, 2229–2242. [Google Scholar] [CrossRef]
- Song, J.M.; Wen, T.X.; Wang, J.Y. Vibration fracture properties of a lightweight Mg-Li-Zn alloy. Scr. Mater. 2007, 56, 529–532. [Google Scholar] [CrossRef]
- Maurya, R.; Mittal, D.; Balani, K. Effect of heat-treatment on microstructure, mechanical and tribological properties of Mg-Li-Al based alloy. J. Mater. Res. Technol. 2020, 9, 4749–4762. [Google Scholar] [CrossRef]
- Takuda, H.; Kikuchi, S.; Tsukada, T.; Kubota, K.; Hatta, N. Effect of strain rate on deformation behavior of a Mg-8.5Li-1Zn alloy sheet at room temperature. Mater. Sci. Eng. A 1999, 271, 251–256. [Google Scholar] [CrossRef]
- Counts, W.A.; Friak, M.; Raabe, D.; Neugebauer, J. Using ab initio calculations in designing bcc Mg-Li alloys for ultra-lightweight applications. Acta Mater. 2009, 57, 69–76. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Pahlavani, M.; Gholami, M.D.; Marzbanrad, J.; Hashemi, R. Production of Al/Mg-Li composite by the accumulative roll bonding process. J. Mater. Res. Technol. 2020, 9, 7880–7886. [Google Scholar] [CrossRef]
- Xu, D.K.; Han, E.H. Effect of quasicrystalline phase on improving the corrosion resistance of a duplex structured Mg-Li alloy. Scr. Mater. 2014, 71, 21–24. [Google Scholar] [CrossRef]
- Hung, S.M.; Lin, H.; Chen, H.W.; Chen, S.Y.; Lin, C.S. Corrosion resistance and electrical contact resistance of a thin permanganate conversion coating on dual-phase LZ91 Mg-Li alloy. J. Mater. Res. Technol. 2021, 11, 1953–1968. [Google Scholar] [CrossRef]
- Zhang, C.H.; Huang, X.M.; Zhang, M.L.; Gao, L.L.; Wu, R.Z. Electrochemical characterization of the corrosion of a Mg-Li Alloy. Mater. Lett. 2008, 62, 2177–2180. [Google Scholar] [CrossRef]
- Gao, L.L.; Zhang, C.H.; Zhang, M.L.; Huang, X.M.; Sheng, N. The corrosion of a novel Mg-11Li-3Al-0.5RE alloy in alkaline NaCl solution. J. Alloys Compd. 2009, 468, 285–289. [Google Scholar] [CrossRef]
- Gray, J.E.; Luan, B. Protective coatings on magnesium and its alloys—A critical review. J. Alloys Compd. 2002, 336, 88–113. [Google Scholar] [CrossRef]
- Chang, L.M.; Wang, P.; Liu, W. Effect of Amino Acids on the Structure and Corrosion Resistance of Mg-Li Alloy Anodic Oxide Film. Adv. Mater. Res. 2011, 1030, 785–788. [Google Scholar] [CrossRef]
- Li, J.F.; Zheng, Z.Q.; Li, S.C.; Ren, W.D.; Zhang, Z. Preparation and galvanic anodizing of a Mg-Li alloy. Mater. Sci. Eng. A 2006, 433, 233–240. [Google Scholar] [CrossRef]
- Yamauchi, N.; Ueda, N.; Okamoto, A.; Sone, T.; Tsujikawa, M.; Oki, S. DLC coating on Mg-Li alloy. Surf. Coat. Technol. 2007, 210, 4913–4918. [Google Scholar] [CrossRef]
- Yin, Z.Z.; Qi, W.C.; Zeng, R.C.; Chen, X.B.; Gu, C.D.; Guan, S.K.; Zheng, Y.F. Advances in coatings on biodegradable magnesium alloys. J. Magnes. Alloys 2020, 8, 42–65. [Google Scholar] [CrossRef]
- Yang, L.H.; Li, J.Q.; Zheng, Y.Z.; Jiang, W.W.; Zhang, M.L. Electroless Ni-P plating with molybdate pretreatment on Mg-8Li alloy. J. Alloys Compd. 2009, 467, 562–566. [Google Scholar] [CrossRef]
- Yang, L.H.; Zhang, M.L.; Li, J.Q.; Yu, X.; Niu, Z.Y. Stannate conversion coatings on Mg-8Li alloy. J. Alloys Compd. 2009, 471, 197–200. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, G.C.; Wang, S.L.; Liu, Y.H.; Luo, H.J. A chrome-free conversion coating for magnesium-lithium alloy by a phosphate-permanganate solution. Surf. Coat. Technol. 2008, 202, 1825–1830. [Google Scholar] [CrossRef]
- Shao, Y.W.; Huang, H.; Zhang, T.; Meng, G.Z.; Wang, F.H. Corrosion protection of Mg-5Li alloy with epoxy coatings containing polyaniline. Corros. Sci. 2009, 51, 2906–2915. [Google Scholar] [CrossRef]
- Oki, S.; Tsujikawa, M.; Morishige, T.; Kamita, M. Thin Protective Aluminum Layer on Mg-Li Alloy by Plasma Spraying and Cold Rolling. Plasma. Process. Polym. 2009, 6, S954–S957. [Google Scholar] [CrossRef]
- Yang, C.L.; Xue, D.F.; Zou, L.J.; Yan, X.X.; Wang, W. Preparation of magnesium hydroxide nanoflowers. J. Cryst. Growth 2005, 282, 448–454. [Google Scholar]
- Guo, G.H.; Song, D.; Jiang, J.H.; Ma, A.B.; Zhang, L.W.; Li, C. Effect of Synthesizing Temperature on Microstructure and Electrochemical Property of the Hydrothermal Conversion Coating on Mg-2Zn-0.5Mn-Ca-Ce Alloy. Metals 2016, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.Y.; Wu, G.M.; Zhang, Y.H.; Zhao, Q. Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31. Appl. Surf. Sci. 2011, 257, 6129–6137. [Google Scholar] [CrossRef]
- Gupta, R.K.; Mensah-Darkwa, K.; Kumar, D. Corrosion Protective Conversion Coatings on Magnesium Disks Using a Hydrothermal Technique. J. Mater. Sci. Technol. 2014, 30, 47–53. [Google Scholar] [CrossRef]
- Feng, L.B.; Zhu, Y.L.; Wang, J.; Shi, X.T. One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance. Appl. Surf. Sci. 2017, 422, 566–573. [Google Scholar] [CrossRef]
- Wang, Z.W.; Su, Y.L.; Li, Q.; Liu, Y.; She, Z.X.; Chen, F.N.; Li, L.Q.; Zhang, X.X.; Zhang, P. Researching a highly anti-corrosion superhydrophobic film fabricated on AZ91D magnesium alloy and its anti-bacteria adhesion effect. Mater. Charact. 2015, 99, 200–209. [Google Scholar] [CrossRef]
- ASTM D 3359-02: Standard Test Methods for Measuring Adhesion by Tape Test; ASTM: Philadelphia, PA, USA, 2002.
- Wang, G.W.; Song, D.; Li, C.; Klu, E.E.; Qiao, Y.X.; Sun, J.P.; Jiang, J.H.; Ma, A.B. Developing Improved Mechanical Property and Corrosion Resistance of Mg-9Li Alloy via Solid-Solution Treatment. Metals 2019, 9, 920. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.W.; Shan, D.Y.; Chen, R.S.; Han, E.H. Corrosion characterization of Mg-8Li alloy in NaCl solution. Corros. Sci. 2009, 51, 1087–1094. [Google Scholar] [CrossRef]
- Ling, L.; Cai, S.; Li, Q.Q.; Sun, J.Y.; Bao, X.G.; Xu, G.H. Recent advances in hydrothermal modification of calcium phosphorus coating on magnesium alloy. J. Magnes. Alloys 2021. [Google Scholar] [CrossRef]
- Kaabi Falahieh Asl, S.; Nemeth, S.; Tan, M.J. Mechanism of calcium phosphate deposition in a hydrothermal coating process. Surf. Coat. Technol. 2015, 270, 197–205. [Google Scholar] [CrossRef]
- Wang, G.W.; Song, D.; Zhou, Z.Z.; Klu, E.E.; Liu, Y.; Liang, N.N.; Jiang, J.H.; Sun, J.P.; Ma, A.B. Effect of Ultrafine Grains on the Coating Reaction and Anticorrosion Performance of Anodized Pure Aluminum. Coatings 2020, 10, 216. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Peng, Z.Y.; Qiu, Y.B.; Qi, K.; Chen, Z.Y.; Guo, X.P. Study on heat treatment to improve the microstructure and corrosion behavior of ZK60 magnesium alloy. J. Mater. Res. Technol. 2020, 9, 11201–11219. [Google Scholar] [CrossRef]
- Kuang, J.; Ba, Z.X.; Li, Z.Z.; Wang, Z.Z.; Qiu, J.H. The study on corrosion resistance of superhydrophobic coatings on magnesium. Appl. Surf. Sci. 2020, 501, 144137. [Google Scholar] [CrossRef]
- Lou, B.S.; Yen, C.Y.; Chen, Y.Y.; Lee, J.W. Effects of processing parameters on the adhesion and corrosion resistance of oxide coatings grown by plasma electrolytic oxidation on AZ31 magnesium alloys. J. Mater. Res. Technol. 2021, 10, 1355–1371. [Google Scholar] [CrossRef]
- Wang, Z.B.; Hu, H.X.; Zheng, Y.G.; Ke, W.; Qiao, Y.X. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corros. Sci. 2016, 103, 50–65. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Xu, D.K.; Wang, S.; Ma, Y.J.; Chen, J.; Wang, Y.X.; Zhou, H.L. Effect of hydrogen charging on microstructural evolution and corrosion behavior of a Ti-4Al-2V-1Mo-1Fe alloy. J. Mater. Sci. Technol. 2021, 60, 168–176. [Google Scholar] [CrossRef]
- Song, D.; Li, C.; Liang, N.N.; Yang, F.L.; Jiang, J.H.; Sun, J.P.; Wu, G.S.; Ma, A.B.; Ma, X.L. Simultaneously improving corrosion resistance and mechanical properties of a magnesium alloy via equal-channel angular pressing and post water annealing. Mater. Des. 2019, 166, 107621. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wang, L.; Zeng, M.Q.; Zeng, R.C.; Lin, C.G.; Wang, Z.L.; Chen, D.C.; Zhang, Q. Corrosion resistance and superhydrophobicity of one-step polypropylene coating on anodized AZ31 Mg alloy. J. Magnes. Alloys 2021, 9, 1443–1457. [Google Scholar] [CrossRef]
- Baril, G.; Pebere, N. The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corros. Sci. 2001, 43, 471–484. [Google Scholar] [CrossRef]
- Baril, G.; Blanc, C.; Pebere, N. AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys-Characterization with respect to their microstructures. J. Electrochem. Soc. 2001, 148, B489–B496. [Google Scholar] [CrossRef]
- Bonora, P.L.; Andrei, M.; Eliezer, A.; Gutman, E.M. Corrosion behaviour of stressed magnesium alloys. Corros. Sci. 2002, 44, 729–749. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Cao, C.N. Introduction of Electrochemical Impedance Spectroscopy; Science Press: Beijing, China, 2002. [Google Scholar]
- Wu, H.; Shi, Z.; Zhang, X.M.; Qasim, A.M.; Xiao, S.; Zhang, F.; Wu, Z.Z.; Wu, G.S.; Ding, K.J.; Chu, P.K. Achieving an acid resistant surface on magnesium alloy via bio-inspired design. Appl. Surf. Sci. 2019, 478, 150–161. [Google Scholar] [CrossRef]
- Gan, W.; Liu, C.F.; Lu, F.Q. Study on surface modification and properties of the AZ91D magnesium alloy used for automobile engine. J. Mater. Res. Technol. 2020. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Chen, Y.P.; Li, L.L.; Emori, W.; Chen, J.; Wang, X.J.; Yang, L.L.; Zhou, H.L.; Song, G.; Naik, N.; et al. Corrosion behavior of a nickel-free high-nitrogen stainless steel with hydrogen charging. JOM 2021, 73, 1165–1172. [Google Scholar] [CrossRef]
- Zhou, H.L.; Li, J.Y.; Li, J.; Ruan, Q.D.; Peng, X.; Li, S.J.; Jin, W.H.; Yu, Z.T.; Chu, P.K.; Li, W. A composite coating with physical interlocking and chemical bonding on WE43 magnesium alloy for corrosion protection and cytocompatibility enhancement. Surf. Coat. Technol. 2021, 412, 127078. [Google Scholar] [CrossRef]
- Ishizaki, T.; Sakamoto, M. Facile Formation of Biomimetic Color-Tuned Superhydrophobic Magnesium Alloy with Corrosion Resistance. Langmuir 2011, 27, 2375–2381. [Google Scholar] [CrossRef]
- Li, W.; Kang, Z.X. Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability. Surf. Coat. Technol. 2014, 253, 205–213. [Google Scholar] [CrossRef]
- Song, D.; Ma, A.B.; Jiang, J.H.; Lin, P.H.; Yang, D.H.; Fan, J.F. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci. 2010, 52, 481–490. [Google Scholar] [CrossRef]
- Song, D.; Ma, A.B.; Jiang, J.H.; Lin, P.H.; Yang, D.H.; Fan, J.F. Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing. Corros. Sci. 2011, 53, 362–373. [Google Scholar] [CrossRef]
- Liu, H.G.; Cao, F.Y.; Song, G.L.; Zheng, D.J.; Shi, Z.M.; Dargusch, M.S.; Atrens, A. Review of the atmospheric corrosion of magnesium alloys. J. Mater. Sci. Technol. 2019, 35, 2003–2016. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Zhang, D.D.; Peng, F.; Liu, X.Y. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating. J. Alloys Compd. 2021, 853, 157010. [Google Scholar] [CrossRef]
Element. | Mg | Li | Fe | Mn | Zn | Cd | Cu | Ni |
---|---|---|---|---|---|---|---|---|
Wt.% | 91.061 | 8.812 | 0.010 | 0.022 | 0.013 | 0.030 | 0.002 | 0.003 |
Sample | Rs (Ω·cm2) | Rc (Ω·cm2) | Rt (Ω·cm2) | Cc (F·cm−2) | CPEdl Y0 (S·sn·cm−2) | n |
---|---|---|---|---|---|---|
uncoated | 14.92 ± 2.3 | 457.6 ± 1.3 | 1196 ± 1.1 | 4.398 ± 1.3 × 10−3 | 2.279 ± 0.2 × 10−5 | 0.9052 ± 0.1 |
120 °C-coated | 18.96 ± 2.5 | 658.6 ± 1.5 | 1679 ± 0.3 | 1.838 ± 1.7 × 10−3 | 1.975 ± 0.2 × 10−5 | 0.8879 ± 0.6 |
130 °C-coated | 27.86 ± 3.3 | 718.7 ± 1.0 | 2094 ± 0.8 | 1.564 ± 0.8 × 10−3 | 4.258 ± 0.7 × 10−5 | 0.8418 ± 1.1 |
140 °C-coated | 41.78 ± 1.7 | 885.6 ± 0.8 | 3410 ± 0.1 | 1.141 ± 1.0 × 10−3 | 1.393 ± 0.4 × 10−5 | 0.8676 ± 0.4 |
150 °C-coated | 28.11 ± 4.1 | 776.3 ± 1.6 | 2565 ± 0.7 | 1.491 ± 1.2 × 10−3 | 1.098 ± 0.3 × 10−5 | 0.8982 ± 1.3 |
Samples | Ecorr (V) | Icorr (A·cm−2) |
---|---|---|
uncoated | −1.558 ± 0.02 | 1.167 ± 0.04 × 10−5 |
120 °C-coated | −1.531 ± 0.05 | 1.033 ± 0.02 × 10−5 |
130 °C-coated | −1.505 ± 0.01 | 9.337 ± 0.03 × 10−6 |
140 °C-coated | −1.471 ± 0.02 | 7.013 ± 0.01 × 10−6 |
150 °C-coated | −1.489 ± 0.03 | 8.264 ± 0.02 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.; Lian, B.; Fu, Y.; Wang, G.; Qiao, Y.; Klu, E.E.; Gong, X.; Jiang, J. Dual-Layer Corrosion-Resistant Conversion Coatings on Mg-9Li Alloy via Hydrothermal Synthesis in Deionized Water. Metals 2021, 11, 1396. https://doi.org/10.3390/met11091396
Song D, Lian B, Fu Y, Wang G, Qiao Y, Klu EE, Gong X, Jiang J. Dual-Layer Corrosion-Resistant Conversion Coatings on Mg-9Li Alloy via Hydrothermal Synthesis in Deionized Water. Metals. 2021; 11(9):1396. https://doi.org/10.3390/met11091396
Chicago/Turabian StyleSong, Dan, Beibei Lian, Yulong Fu, Guowei Wang, Yanxin Qiao, Eyram Edwin Klu, Xinyue Gong, and Jinghua Jiang. 2021. "Dual-Layer Corrosion-Resistant Conversion Coatings on Mg-9Li Alloy via Hydrothermal Synthesis in Deionized Water" Metals 11, no. 9: 1396. https://doi.org/10.3390/met11091396
APA StyleSong, D., Lian, B., Fu, Y., Wang, G., Qiao, Y., Klu, E. E., Gong, X., & Jiang, J. (2021). Dual-Layer Corrosion-Resistant Conversion Coatings on Mg-9Li Alloy via Hydrothermal Synthesis in Deionized Water. Metals, 11(9), 1396. https://doi.org/10.3390/met11091396