Dynamic Mechanical Properties of Ti–Al3Ti–Al Laminated Composites: Experimental and Numerical Investigation
Abstract
:1. Introduction
2. Experimental Method
2.1. Materials Preparation
2.2. Mechanical Experiment
2.3. Numerical Simulation Method
3. Results and Discussion
3.1. Dynamic Mechanical Properities
3.2. Simulation Calculation
3.2.1. The Simulated Dynamic Stress-Strain Curves
3.2.2. Energy Analysis
3.2.3. Comparison of Failure Morphology
4. Conclusions
- (1)
- The Ti–Al3Ti–Al laminated composites with Al content of 10–15% had excellent compressive strength and failure strain.
- (2)
- The laminated composites without Al showed brittle fracture; there were three main cracks on the surface of the specimen. The laminated composites containing 15% Al had only one main crack, and ruptured in a direction approximately 45° from the vertical axis. When the Al content reached 30%, the specimen revealed multiple cracking properties, and the deformation was large.
- (2)
- When the Al content was 10%, the overall stress distribution of the specimen was uniform and had the best impact resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, D.K.; Cizek, P.; Hodgson, P.; Wen, C.E. Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scr. Mater. 2010, 62, 321–324. [Google Scholar] [CrossRef]
- Milman, Y.V.; Miracle, D.B.; Chugunova, S.I.; Voskoboinik, I.V.; Podrezov, Y.N. Mechanical behaviour of Al3Ti intermetallic and l12 phases on its basis. Intermetallics 2001, 9, 839–845. [Google Scholar] [CrossRef]
- Foadian, F.; Soltanieh, M.; Adeli, M.; Etminanbakhsh, M.A. Study on the Formation of Intermetallics During the Heat Treatment of Explosively Welded Al-Ti Multilayers. Metall. Mater. Trans. A 2014, 45, 1823–1832. [Google Scholar] [CrossRef]
- Rohatgi, A.; Harach, D.J.; Vecchio, K.S.; Harvey, K.P. Resistance-curve and fracture behavior of Ti–Al3Ti metallic–intermetallic laminate (MIL) composites. Acta Mater. 2003, 51, 2933–2957. [Google Scholar] [CrossRef]
- Suzuki, A.; Kosugi, N.; Takata, N.; Kobashi, M. Microstructure and compressive properties of porous hybrid materials consisting of ductile Al/Ti and brittle Al_3Ti phases fabricated by reaction sintering with space holder. Mater. Sci. Eng. 2020, 776, 139000. [Google Scholar] [CrossRef]
- Yang, R.; Zhao, F.; Wang, L.Z.; Zhang, Z.Y.; Zhang, B.B. Fast fabrication of Al3Ti/Al composites using combustion synthesis and melt dilution. Mater. Lett. 2021, 298, 130036. [Google Scholar] [CrossRef]
- Peng, L.; Li, H.; Wang, J. Processing and mechanical behavior of laminated titanium–titanium tri-aluminide (Ti–Al3Ti) composites. Mat. Sci. Eng. A 2005, 406, 309–318. [Google Scholar] [CrossRef]
- Adharapurapu, R.R.; Vecchio, K.S.; Jiang, F.C.; Rohatgi, A. Fracture of Ti-Al3Ti metal-intermetallic laminate composites: Effects of lamination on resistance-curve behavior. Metall. Mater. Trans. A 2005, 36, 3217–3236. [Google Scholar] [CrossRef]
- Li, T.Z.; Grignon, F.; Benson, D.J.; Vecchio, K.S.; Olevsky, E.A.; Jiang, F.C.; Rohatgi, A.; Schwarz, R.B.; Meyers, M.A. Modeling the elastic properties and damage evolution in Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Mat. Sci. Eng. A 2004, 374, 10–26. [Google Scholar] [CrossRef]
- Li, T.Z.; Jiang, F.C.; Olevsky, E.A.; Vecchio, K.S.; Meyers, M.A. Damage evolution in Ti6Al4V–Al3Ti metal-intermetallic laminate composites. Mat. Sci. Eng. A 2007, 443, 1–15. [Google Scholar] [CrossRef]
- Fan, X.L.; Yuan, M.N.; Qin, Q. Failure mechanisms of Ti-Al3Ti metal-intermetallic laminate composites under high-speed impact. Rare. Metal. Mat. Eng. A 2018, 47, 2615–2620. [Google Scholar]
- Pereira, J.M.; Revilock, D.M.; Ruggeri, C.R.; Emmerling, W.C.; Altobelli, D.J. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development. J. Aerospace Eng. 2014, 27, 56–465. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, K.S. Synthetic multifunctional metallic-intermetallic laminate composites. JOM 2005, 57, 25–31. [Google Scholar] [CrossRef]
- Snipes, J.S.; Ramaswami, S.; Grujicic, M. Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs): A computational investigation. Aims. Mater. Sci. 2016, 3, 686–721. [Google Scholar]
- Zelepugin, S.A.; Zelepugin, A.S.; Tolkachev, V.F. Numerical Simulation of Multilayer Composites Failure under Dynamic Loading. Appl. Mech. Mater. 2015, 756, 408–413. [Google Scholar] [CrossRef]
- Zelepugin, S.A.; Mali, V.I.; Zelepugin, A.S.; Ilina, E. Failure of Metallic-Intermetallic Laminate Composites under Dynamic Loading. AIP Conf. Proc. 2012, 1426, 1101–1104. [Google Scholar]
- Harach, D.J. Processing, properties, and ballistic performance of titanium-aluminum titanium metal-intermetallic laminate (MIL) composites. Diss. Abstr. Int. 2000, 61, 4922. [Google Scholar]
- Adharapurapu, R.R.; Vecchio, K.S.; Jiang, F.C.; Rohatgi, A. Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites. Metall. Mater. Trans. A 2005, 36, 95–1608. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, C.H.; Zhu, S.F.; Wei, N.X.; Javed, R.A.; Jiang, F.C. Fracture behavior of Ti/Al3Ti metal-intermetallic laminate (MIL) composite under dynamic loading. Mat. Sci. Eng. A 2015, 637, 235–242. [Google Scholar] [CrossRef]
- Zhou, P.J.; Guo, C.H.; Wang, E.H.; Wang, Z.M.; Chen, Y.; Jiang, F.C. Interface tensile and fracture behavior of the Ti/Al3Ti Metal-Intermetallic Laminate (MIL) composite under quasi-static and high strain rates. Mat. Sci. Eng. A 2016, 665, 66–75. [Google Scholar] [CrossRef]
- Yuan, M.N.; Yao, Y.H.; Han, F.Z.; Wang, Z.J. Evaluation of the compressive and anti-penetration properties of Ti-Al3Ti-Al laminated composites. Adv. Compos. Lett. 2020, 29, 1–5. [Google Scholar] [CrossRef]
- Price, R.D.; Jiang, F.C.; Kulin, R.M.; Vecchio, K.S. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites. Mater. Sci. Eng. A 2011, 528, 3134–3146. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Fan, G.H.; Yu, T.B.; Hansen, N.; Geng, L.; Huang, X.X. Laminated Ti-Al composites: Processing, structure and strength. Mater. Sci. Eng. A 2016, 673, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Patselov, A.M.; Gladkovskii, S.V.; Lavrikov, R.D.; Kamantsev, I.S. Fracture toughness of Ti–Al3Ti–Al–Al3Ti laminate composites under static and cyclic loading conditions. Russ. Metall. 2015, 2015, 811–815. [Google Scholar] [CrossRef]
- Chen, W.H.; He, W.J.; Chen, Z.J.; Jiang, B.; Liu, Q. Extraordinary room temperature tensile ductility of laminated Ti/Al composite: Roles of anisotropy and strain rate sensitivity. Int. J. Plast. 2020, 133, 102806. [Google Scholar] [CrossRef]
- Harach, D.J.; Vecchio, K.S. Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air. Metall. Mater. Trans. A 2001, 32, 1493–1505. [Google Scholar] [CrossRef]
- Wu, H.; Cui, X.P.; Geng, L.; Fan, G.H.; Pang, J.C.; Wei, L.S. Fabrication and characterization of in-situ TiAl matrix composite with controlled microlaminated architecture based on SiC/Al and Ti system. Intermetallics 2013, 43, 8–15. [Google Scholar] [CrossRef]
- Peng, L.M.; Wang, J.H.; Li, H.; Zhao, J.H.; He, L.H. Synthesis and microstructural characterization of Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Scripta. Mater. 2005, 52, 243–248. [Google Scholar] [CrossRef]
- Fan, M.Y.; Domblesky, J.; Jin, K.; Qin, L.; Cui, S.Q.; Guo, X.Z.; Kim, N.; Tao, J. Effect of original layer thicknesses on the interface bonding and mechanical properties of TiAl laminate composites. Mater. Des. 2016, 99, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Xu, C.; Fan, G.H.; Maawad, E.; Gan, W.M.; Geng, L.; Lin, F.X.; Tang, G.Z.; Wu, H.; Du, Y.; et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite. Acta Mater. 2018, 153, 235–249. [Google Scholar] [CrossRef]
- Yuan, M.N.; Li, L.L.; Wang, Z.J. Study of the microstructure modulation and phase formation of Ti-Al3Ti laminated composites. Vacuum. 2018, 157, 481–486. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, S.F.; Guo, C.H.; Vecchio, K.S.; Jiang, F.C. Numerical Investigation of the Ballistic Performance of Metal-Intermetallic Laminate Composites. Appl. Compos. Mater. 2015, 22, 437–456. [Google Scholar] [CrossRef]
- Senthil, K.; Arindam, B.; Iqbal, M.A.; Gupta, N.K. Ballistic Response of 2024 Aluminium Plates Against Blunt Nose Projectiles. Procedia Eng. 2017, 173, 363–368. [Google Scholar] [CrossRef]
- Holmquist, T.J.; Johnson, G.R. Modeling prestressed ceramic and its effect on ballistic performance. Int. J. Impact. Eng. 2005, 31, 113–127. [Google Scholar] [CrossRef]
- Tiamiyu, A.A.; Basu, R.; Odeshi, A.G.; Szpunar, J.A. Plastic deformation in relation to microstructure and texture evolution in AA 2017-T451 and AA 2624-T351 aluminum alloys under dynamic impact loadings. Mater. Sci. Eng. A 2015, 636, 379–388. [Google Scholar] [CrossRef]
- Xiong, Y.Y.; Li, N.; Jiang, H.W.; Li, Z.G.; Xu, Z.; Liu, L. Microstructural Evolutions of AA7055 Aluminum Alloy Under Dynamic and Quasi-static Compressions. Acta Metall. Sin. Engl. 2014, 27, 272–278. [Google Scholar] [CrossRef]
- Odeshi, A.G.; Adesola, A.O.; Badmos, A.Y. Failure of AA 6061 and 2099 aluminum alloys under dynamic shock loading. Eng. Fail. Anal. 2013, 35, 302–314. [Google Scholar] [CrossRef]
- Konieczny, M. Relations between Microstructure and Mechanical Properties in Laminated Ti-Intermetallic Composites Synthesized Using Ti and Al Foils. Key. Eng. Mater. 2013, 592–593, 728–731. [Google Scholar] [CrossRef]
Alloy | TC4 | Alloy | Al |
---|---|---|---|
Al | 5.50–6.75 | Si | ≤0.5 |
V | 3.5–4.5 | Fe | ≤0.5 |
Fe | ≤0.5 | Cu | 3.8–4.9 |
C | ≤0.1 | Mn | 0.30–0.9 |
O | ≤0.2 | Mg | 1.2–1.8 |
N | ≤0.05 | Ni | ≤0.1 |
- | Thickness and Number of Al Alloy Layers (μm/n) | Thickness and Number of TC4 Alloy Layers (μm/n) | Thickness and Number of Al3Ti Alloy Layers (μm/n) | Proportion of Al Content (%) |
---|---|---|---|---|
Model 1 | 0/0 | 48/25 | 200/24 | 0 |
Model 2 | 25/24 | 48/25 | 87.5/48 | 10 |
Model 3 | 50/24 | 48/25 | 75/48 | 20 |
Model 4 | 75/24 | 48/25 | 62.5/48 | 30 |
- | Ρ (g/cm3) | E (GPa) | ν | A (GPa) | B (GPa) | C | m | n | T melt (K) |
---|---|---|---|---|---|---|---|---|---|
Al | 2.71 | 71 | 0.34 | 265 | 426 | 0.015 | 1.1 | 0.93 | - |
TC4 | 4.428 | 113.8 | 0.342 | 1098 | 1092 | 0.014 | 1.1 | 0.93 | 1878 |
Ρ (g/cm3) | E (GPa) | ν | A | B | C | M | N | T | PHEL (GPa) |
---|---|---|---|---|---|---|---|---|---|
3.35 | 216 | 0.17 | 0.85 | 0.31 | 0.013 | 0.21 | 0.29 | 0.2 | 1.842 |
D1 | D2 | K1 (GPa) | K2 (GPa) | K3 (GPa) | - | - | - | - | - |
0.02 | 1.85 | 2.01 | 2.6 | 0 | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Yuan, M.; Zheng, L.; Wei, Z.; Wang, K. Dynamic Mechanical Properties of Ti–Al3Ti–Al Laminated Composites: Experimental and Numerical Investigation. Metals 2021, 11, 1489. https://doi.org/10.3390/met11091489
Ma J, Yuan M, Zheng L, Wei Z, Wang K. Dynamic Mechanical Properties of Ti–Al3Ti–Al Laminated Composites: Experimental and Numerical Investigation. Metals. 2021; 11(9):1489. https://doi.org/10.3390/met11091489
Chicago/Turabian StyleMa, Jian, Meini Yuan, Lirong Zheng, Zeyuan Wei, and Kai Wang. 2021. "Dynamic Mechanical Properties of Ti–Al3Ti–Al Laminated Composites: Experimental and Numerical Investigation" Metals 11, no. 9: 1489. https://doi.org/10.3390/met11091489
APA StyleMa, J., Yuan, M., Zheng, L., Wei, Z., & Wang, K. (2021). Dynamic Mechanical Properties of Ti–Al3Ti–Al Laminated Composites: Experimental and Numerical Investigation. Metals, 11(9), 1489. https://doi.org/10.3390/met11091489