Copper and Zinc Recovery from Sulfide Concentrate by Novel Artificial Microbial Community
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Source and Mineral Component Analysis
2.2. Culture for the Artificial Microbial Community
2.3. Chemical Analysis Procedure of Leached Elements
3. Results and Discussion
3.1. Mineral Composition for Sulfide Concentrate
3.2. MLA and Liberation Classes for Sulfide Concentrate
3.3. Artificial Microbial Community Growth Characteristic Analysis
3.4. Reaction Condition Exploration for Leaching Process
3.5. Efficient Performance for Novel Artificial Microbial Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Jiskani, I.M.; Jinliang, C.; Yan, H. Evaluation and future framework of green mine construction in China based on the DPSIR model. Sustain. Environ. Res. 2020, 30, 448–457. [Google Scholar] [CrossRef]
- Wei, X.; Liu, H.; Li, G. Influencing Factors of Eco-Environmental Safety of Mines and Their Green Development: A Case Study of Taoshan Coal Mine in Heilongjiang Province, China. Nat. Environ. Polution Technol. 2020, 19, 831–838. [Google Scholar]
- Martinez, P.; Vera, M.; Bobadilla-Fazzini, R. Omics on bioleaching: Current and future impacts. Appl. Microbiol. Biotechnol. 2015, 99, 8337–8350. [Google Scholar] [CrossRef]
- Bobadilla-Fazzini, R.A.; Pérez, A.; Gautier, V.; Jordan, H.; Parada, P. Primary copper sulfides bioleaching vs. chloride leaching: Advantages and drawbacks. Hydrometallurgy 2017, 168, 26–31. [Google Scholar] [CrossRef]
- Hernandez, S. The World of Copper Factbook; International Copper Study Group: Lisbon, Portugal, 2017; pp. 1–58. [Google Scholar]
- Hallberg, K.B.; Gonza´lez-Toril, E.; Johnson, D.B. Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 2010, 14, 9–19. [Google Scholar] [CrossRef]
- Ilyas, S.; Chi, R.-A.; Lee, J.-C. Fungal Bioleaching of Metals from Mine Tailing. Miner. Process. Extr. Met. Rev. 2013, 34, 185–194. [Google Scholar] [CrossRef]
- Panda, S.; Akcil, A.; Pradhan, N.; Deveci, H. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresour. Technol. 2015, 196, 694–706. [Google Scholar] [CrossRef]
- Feng, S.; Yang, H.; Wang, W. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages. Bioresour. Technol. 2016, 200, 186–193. [Google Scholar] [CrossRef]
- Africa, C.; Van Hille, R. Investigation and in situ visualisation of interfacial interactions of thermophilic microorganisms with metal-sulfides in a simulated heap environment. Miner. Eng. 2013, 48, 100–107. [Google Scholar] [CrossRef]
- Wang, X.; Ma, L.; Wu, J.; Xiao, Y.; Tao, J.; Liu, X. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. Bioresour. Technol. 2020, 308, 123273. [Google Scholar] [CrossRef]
- Ke, Z.; Zhao, X.; Feng, Y.; Wang, Q.; Wang, Y.; Zhang, C.; Zhu, B.; Ren, G. Semiconducting Minerals Participated Extracellular Electron Transfer Process in High-Altitude Red Soil from Gansu, China. Geomicrobiol. J. 2021, 38, 905–913. [Google Scholar] [CrossRef]
- Zeng, J.; Gou, M.; Tang, Y.-Q.; Li, G.-Y.; Sun, Z.-Y.; Kida, K. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresour. Technol. 2016, 218, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Huang, Y.; Guo, J.; Cai, R.; Zheng, H.; Lin, C.; Chen, Q. Investigation of cleaner sulfide mineral oxidation technology: Simulation and evaluation of stirred bioreactors for gold-bioleaching process. J. Clean. Prod. 2018, 192, 364–375. [Google Scholar] [CrossRef]
- Holmes, D. Review of International Biohydrometallurgy Symposium, Frankfurt, 2007. Hydrometallurgy 2008, 92, 69–72. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Pan, S.-H. Simultaneous metal leaching and sludge digestion by thermophilic microorganisms: Effect of solids content. J. Hazard. Mater. 2010, 179, 340–347. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Lin, J.-G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: Effects of sulfur concentration. Water Res. 2004, 38, 3205–3214. [Google Scholar] [CrossRef]
- Deng, X.; Chai, L.; Yang, Z. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J. Hazard. Mater. 2012, 233–234, 25–32. [Google Scholar] [CrossRef]
- Blais, J.; Tyagi, R.; Auclair, J. Bioleaching of metals from sewage sludge: Microorganisms and growth kinetics. Water Res. 1993, 27, 101–110. [Google Scholar] [CrossRef]
- Hopfe, S.; Flemming, K.; Lehmann, F.; Möckel, R.; Kutschke, S.; Pollmann, K. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha. Waste Manag. 2017, 62, 211–221. [Google Scholar] [CrossRef]
- Kaksonen, A.; Boxall, N.; Gumulya, Y. Recent progress in biohydrometallurgy and microbial characterization. Hydrometallurgy 2018, 180, 7–25. [Google Scholar] [CrossRef]
- Pathak, A.; Morrison, L.; Healy, M.G. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review. Bioresour. Technol. 2017, 229, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Asghari, I.; Mousavi, S.M.; Amiri, F.; Tavassoli, S. Bioleaching of spent refinery catalysts: A review. J. Ind. Eng. Chem. 2013, 19, 1069–1081. [Google Scholar] [CrossRef]
- Shang, H.; Gao, W.-C.; Wu, B.; Wen, J.-K. Bioleaching and dissolution kinetics of pyrite, chalcocite and covellite. J. Cent. South Univ. 2021, 28, 2037–2051. [Google Scholar] [CrossRef]
- Tuovinen, O.; Särkijärvi, S.; Peuraniemi, E. Acid Leaching of Cu and Zn from a Smelter Slag with a Bacterial Consortium. Adv. Mater. Res. 2015, 1130, 660–663. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Lee, J.U. A comparison of microbial leaching and chemical leaching of arsenic and heavy metals from mine tailings. Biotechnol. Bioprocess Eng. 2015, 20, 91–99. [Google Scholar] [CrossRef]
- Cui, X.; Wang, X. Bioleaching of a complex Co-Ni-Cu sulfide flotation concentrate by Bacillus megaterium QM B1551 at neutral pH. Geomicrobiol. J. 2016, 3, 734–741. [Google Scholar] [CrossRef]
- Seh-Bardan, B.J.; Othman, R.; Ab Wahid, S.; Husin, A.; Sadegh-Zadeh, F. Bioleaching of Heavy Metals from Mine Tailings by Aspergillus fumigatus. Bioremediat. J. 2012, 16, 57–65. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, N.; Mao, F.; Wu, P.; Dang, Z. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis. Sci. Total. Environ. 2021, 790, 148151. [Google Scholar] [CrossRef]
- Couillard, D.; Mercier, G. Bacterial leaching of heavy metals from sewage sludge-bioreactors comparison. Environ. Pollut. 1990, 66, 237–252. [Google Scholar] [CrossRef]
- Liang, Y.L.; Yin, H.Q.; Xiao, Y.H.; Tang, M.; Feng, X.; Xie, Z.Y.; Qiu, G.Z.; Liu, X.D. Microbial Leaching of Copper from Tailings of Low Grade Sulphide Ores in Zambia. Adv. Mater. Res. 2015, 1130, 473–476. [Google Scholar] [CrossRef]
- Srichandan, H.; Mohapatra, R.K.; Parhi, P.K.; Mishra, S. Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy 2019, 189, 105122. [Google Scholar] [CrossRef]
- Li, J.; Meng, X.; Zhao, H.; Zhang, Y.; Liu, R.; Gu, G. Efficient separation of zinc from zinc containing copper sulfide concentrate by chemical leaching. Chem. Erde-Geochem. 2021, 107, 125773. [Google Scholar] [CrossRef]
- Arshadi, M.; Pourhossein, F.; Mousavi, S.M.; Yaghmaei, S. Green recovery of Cu-Ni-Fe from a mixture of spent PCBs using adapted A. ferrooxidans in a bubble column bioreactor. Sep. Purif. Technol. 2021, 272, 118701. [Google Scholar] [CrossRef]
- Mäkinen, J.; Heikola, T.; Salo, M.; Kinnunen, P. The Effects of Milling and pH on Co, Ni, Zn and Cu Bioleaching from Polymetallic Sulfide Concentrate. Minerals 2021, 11, 317. [Google Scholar] [CrossRef]
Microbe or Method | Result (Leaching Efficiency) | Reference |
---|---|---|
Aspergillus fumigatus | As (62%), Fe (58%), Mn (100%), Zn (54%) | Bahi Jalili Seh-Bardan et al., 2012 [28] |
Acidithiobacillus thiooxidans; Acidithiobacillus ferrooxidans; Leptospirillum ferriphilum | Cu (69~83%); Zn (4.1~14%) | Olli H. Tuovinen et al., 2015 [25] |
Acidithiobacillus thiooxidans; Acidithiobacillus ferrooxidans | Cu (38%); Zn (67%) | Van Khanh Nguyen and Jong-Un Lee., 2015 [26] |
Bacillus megaterium QM B1551 | Co (60.7%); Ni (76.3%); Cu (39.8%) | Xinlan Cui et al., 2016 [27] |
Acidithiobacillus sp., Leptopirillum sp., Ferroplasma sp. | Pyrite (69.29%); Chalcocite (65.02%); Covellite (84.97%) | Shang He et al., 2021 [24] |
Aspergillus niger | Indium (100%) | Jiaying Cui et al., 2021 [29] |
Chemical leaching | Zn (85%); Cu and Fe (10%) | Jia Li et al., 2021 [33] |
Acidithiobacillus ferrooxidans | Cu (54%); Ni (75%), Fe (55%) | Mahdokht Arshadi et al., 2021 [34] |
Oxides | Fe2O3 | SiO2 | MgO | CaO | Na2O | ZnO | CuO |
---|---|---|---|---|---|---|---|
Content | 37.6 | 5.94 | 4.24 | 2.27 | 0.540 | 0.730 | 0.540 |
Oxides | Cr2O3 | TiO2 | MnO | K2O | NiO | Al2O3 | SO3 |
Content | 0.0100 | 0.0100 | 0.0500 | 0.0100 | 0.0400 | 0.380 | 47.6 |
Elements | Fe | S | Si | Ca | Mg | Zn | Cu | Al |
---|---|---|---|---|---|---|---|---|
Content | 48.5 | 32.3 | 2.61 | 1.41 | 1.32 | 0.890 | 0.600 | 0.0600 |
Elements | Mn | Ni | Ti | Cr | Pb | K | Na | |
Content | 0.0400 | 0.0300 | 0.0100 | 0.0100 | 0.0100 | 0.0100 | 0.0100 |
Mineral | Content | Mineral | Content |
---|---|---|---|
Pyrite | 40.0 | Quartz | 0.720 |
Pyrrhotite | 31.0 | Albite | 0.0600 |
Chalcopyrite | 1.77 | Hornblende | 0.360 |
Sphalerite | 1.31 | Pyroxene | 0.0300 |
Galena | 0.0100 | Muscovite | 0.0300 |
Magnetite, Hematite | 13.5 | Biotite | 0.610 |
Chromite | 0.0100 | Enstatite | 3.86 |
Ilmenite | 0.0100 | Calcite | 0.0400 |
Anhydrite | 0.0800 | Dolomite | 4.07 |
FeCaMgSO4 | 2.50 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Yuan, X.; Li, H.; Che, X.; Zhong, J.; Wang, L.; Liu, Y.; Hu, X.; Zhang, Q.; Jin, R.; et al. Copper and Zinc Recovery from Sulfide Concentrate by Novel Artificial Microbial Community. Metals 2022, 12, 45. https://doi.org/10.3390/met12010045
Cui X, Yuan X, Li H, Che X, Zhong J, Wang L, Liu Y, Hu X, Zhang Q, Jin R, et al. Copper and Zinc Recovery from Sulfide Concentrate by Novel Artificial Microbial Community. Metals. 2022; 12(1):45. https://doi.org/10.3390/met12010045
Chicago/Turabian StyleCui, Xinglan, Xuetao Yuan, Hongxia Li, Xiaokui Che, Juan Zhong, Lei Wang, Ying Liu, Xuewu Hu, Qidong Zhang, Rongzhen Jin, and et al. 2022. "Copper and Zinc Recovery from Sulfide Concentrate by Novel Artificial Microbial Community" Metals 12, no. 1: 45. https://doi.org/10.3390/met12010045
APA StyleCui, X., Yuan, X., Li, H., Che, X., Zhong, J., Wang, L., Liu, Y., Hu, X., Zhang, Q., Jin, R., & Zheng, Q. (2022). Copper and Zinc Recovery from Sulfide Concentrate by Novel Artificial Microbial Community. Metals, 12(1), 45. https://doi.org/10.3390/met12010045