Machine Learning Based Predictions of Fatigue Crack Growth Rate of Additively Manufactured Ti6Al4V
Abstract
:1. Introduction
2. Data Description
2.1. Model Building
2.2. Feature Selection
2.3. Model Development
2.3.1. K-Nearest Neighbour Algorithm
2.3.2. Decision Trees
2.3.3. Random Forest
2.3.4. Extreme Gradient Boosting Algorithm
2.4. Hyper Parameter Optimization
3. Methods
3.1. Model Validation
3.2. Feature Importance Analysis
4. Microstructure-Property Correlation
5. Conclusions
- The influence of postprocessing treatments and built orientation on and FCGR of Ti6Al4V fabricated using LPBF, analyzed through different ML algorithms, have shown that the former has influenced its fatigue life significantly compared to the latter.
- It was observed that the XGB algorithm has led to best R2 score and least mean squared error in predicting the FCGR of Ti64 alloy.
- In the feature importance analysis, apart from ∆K, the important parameters identified are Post Processing technique and Built Orientation for predicting the FCGR of Ti-64 alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jebieshia, T.R.; Kim, J.M.; Kang, J.W.; Son, S.W.; Kim, H.D. Microstructural and Very High Cycle Fatigue (VHCF) Behavior of Ti6Al4V—A Comparative Study. Materials 2020, 13, 1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bača, A.; Konečná, R.; Nicoletto, G.; Kunz, L. Influence of Build Direction on the Fatigue Behaviour of Ti6Al4V Alloy Produced by Direct Metal Laser Sintering. Mater. Today Proc. 2016, 3, 921–924. [Google Scholar] [CrossRef]
- Kahlin, M.; Ansell, H.; Kerwin, A.; Smith, B.; Moverare, J. Variable amplitude loading of additively manufactured Ti6Al4V subjected to surface post processes. Int. J. Fatigue 2021, 142, 105945. [Google Scholar] [CrossRef]
- Agius, D.J.; Kourousis, K.I.; Wallbrink, C. A Review of the As-Built SLM Ti-6Al-4V Mechanical Properties towards Achieving Fatigue Resistant Designs. Metals 2018, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Günther, J.; Tröster, T.; Weidner, A.; Leuders, S. Fatigue behavior of Ti-6Al-4V additively manufactured by selective laser and electron beam melting—On the impact of the chemical composition, process- induced porosity and surface roughness. DVM-Rep. 2017, 2, 89–98. [Google Scholar]
- Mertova, K.; Dzugan, J.; Roudnicka, M. Fatigue properties of SLM-produced Ti6Al4V with various post-processing processes. IOP Conf. Ser. Mater. Sci. Eng. 2018, 461, 012052. [Google Scholar] [CrossRef] [Green Version]
- Dinh, T.; Han, S.; Yaghoubi, V.; Xiang, H.; Erdelyi, H.; Craeghs, T.; Segers, J.; Van Paepegem, W. Modeling detrimental effects of high surface roughness on the fatigue behavior of additively manufactured Ti-6Al-4V alloys. Int. J. Fatigue 2021, 144, 106034. [Google Scholar] [CrossRef]
- Qian, M.; Xu, W.; Brandt, M.; Tang, H. Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties. MRS Bull. 2016, 41, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, P.; Aristizabal, M.; Kong, W.; Villapun, V. Selective laser melting of Ti-6Al-4V: The impact of post-processing on the tensile, fatigue and biological properties for medical implant applications. Materials 2020, 13, 2813. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Li, H.; Liu, S.; Zou, J.; Shen, S.; Wang, Y.; Zhang, T.; Zhang, D.; Chen, Y.; Qi, H. Influence of laser post-processing on pore evolution of Ti–6Al–4V alloy by laser powder bed fusion. J. Alloys Compd. 2020, 818, 152845. [Google Scholar] [CrossRef]
- Semenova, I.P.; Raab, G.I.; Golubovskiy, E.R.; Valiev, R.R. Service properties of ultrafine-grained Ti–6Al–4V alloy at elevated temperature. J. Mater. Sci. 2013, 48, 4806–4812. [Google Scholar] [CrossRef]
- Hagiwara, M.; Kitashima, T.; Emura, S.; Iwasaki, S.; Shiwa, M. Very High-Cycle Fatigue and High-Cycle Fatigue of Minor Boron-Modified Ti–6Al–4V Alloy. Mater. Trans. 2019, 60, 2213–2222. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, E.; Furuya, Y.; Nagashima, N.; Matsuoka, S. Effect of Stress Ratio on Giga-cycle Fatigue Properties for Ti–6Al–4V Alloy. Tetsu-to-Hagane 2010, 96, 36–41. [Google Scholar] [CrossRef]
- Oguma, H.; Nakamura, T. The Effect of Stress Ratios on Very High Cycle Fatigue Properties of Ti-6Al-4V. Key Eng. Mater. 2004, 261–263, 1227–1232. [Google Scholar] [CrossRef]
- Greitemeier, D.; Palm, F.; Syassen, F.; Melz, T. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int. J. Fatigue 2017, 94, 211–217. [Google Scholar] [CrossRef]
- Pessard, E.; Lavialle, M.; Laheurte, P.; Didier, P.; Brochu, M. High-cycle fatigue behavior of a laser powder bed fusion additive manufactured Ti-6Al-4V titanium: Effect of pores and tested volume size. Int. J. Fatigue 2021, 149, 106206. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.; Veldhuis, S.C. A study of the relationship between thermal expansion and residual stresses in selective laser melting of Ti-6Al-4V. J. Manuf. Process. 2020, 52, 181–192. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, B.; Feng, X.; Song, Z.; Qi, X.; Li, C.; Chen, G.; Zhang, G. Pore-affected fatigue life scattering and prediction of additively manufactured Inconel 718: An investigation based on miniature specimen testing and machine learning approach. Mater. Sci. Eng. A 2020, 802, 140693. [Google Scholar] [CrossRef]
- Macallister, N.; Vanmeensel, K.; Becker, T.H. Fatigue crack growth parameters of Laser Powder Bed Fusion produced Ti-6Al-4V. Int. J. Fatigue 2021, 145, 106100. [Google Scholar] [CrossRef]
- González, J.; Armas, G.; Negrin, J.; Beltrán, A.; Trueba, P.; Gotor, F.; Peón, E.; Torres, Y. Influence of Successive Chemical and Thermochemical Treatments on Surface Features of Ti6Al4V Samples Manufactured by SLM. Metals 2021, 11, 313. [Google Scholar] [CrossRef]
- Teixeira, Ó.; Silva, F.J.G.; Ferreira, P. Quality and Residual Stresses of the Ti–6Al–4V Parts Produced by Additive Manufacturing. Metals 2020, 10, 1006. [Google Scholar] [CrossRef]
- Cain, V.; Thijs, L.; Van Humbeeck, J.; Van Hooreweder, B.; Knutsen, R. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Addit. Manuf. 2015, 5, 68–76. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Raja, A.; Chukka, S.T.; Jayaganthan, R. Prediction of Fatigue Crack Growth Behaviour in Ultrafine Grained Al 2014 Alloy Using Machine Learning. Metals 2020, 10, 1349. [Google Scholar] [CrossRef]
- Nguyen-Le, D.; Do, D.T.T.; Lee, J.; Rabczuk, T.; Nguyen-Xuan, H. Forecasting Damage Mechanics by Deep Learning. Comput. Mater. Contin. 2019, 61, 951–977. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, W.; Du, Y.; Zhang, G.; Yang, Y. Prediction of fatigue stress concentration factor using extreme learning machine. Comput. Mater. Sci. 2016, 125, 136–145. [Google Scholar] [CrossRef]
- Zhan, Z.; Li, H. A novel approach based on the elastoplastic fatigue damage and machine learning models for life prediction of aerospace alloy parts fabricated by additive manufacturing. Int. J. Fatigue 2021, 145, 106089. [Google Scholar] [CrossRef]
- Zhan, Z.; Li, H. Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. Int. J. Fatigue 2021, 142, 105941. [Google Scholar] [CrossRef]
- Moon, S.; Ma, R.; Attardo, R.; Tomonto, C.; Nordin, M.; Wheelock, P.; Glavicic, M.; Layman, M.; Billo, R.; Luo, T. Impact of surface and pore characteristics on fatigue life of laser powder bed fusion Ti–6Al–4V alloy described by neural network models. Sci. Rep. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- Du, L.; Qian, G.; Zheng, L.; Hong, Y. Influence of processing parameters of selective laser melting on high-cycle and very-high-cycle fatigue behaviour of Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 240–256. [Google Scholar] [CrossRef]
- Pan, X.; Li, X.; Zhou, L.; Feng, X.; Luo, S.; He, W.; Semenova, I.P.; Raab, G.I.; Golubovskiy, E.R.; Valiev, R.Z.R.; et al. Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V. Int. J. Fatigue 2017, 116, 543–552. [Google Scholar] [CrossRef]
- Wycisk, E.; Emmelmann, C.; Siddique, S.; Walther, F. High Cycle Fatigue (HCF) Performance of Ti-6Al-4V Alloy Processed by Selective Laser Melting. Adv. Mater. Res. 2013, 816–817, 134–139. [Google Scholar] [CrossRef]
- Xie, Y.; Gong, M.; Zhou, Q.; Li, Q.; Wang, F.; Zeng, X.; Gao, M. Effect of microstructure on fatigue crack growth of wire arc additive manufactured Ti–6Al–4V. Mater. Sci. Eng. A 2021, 826, 141942. [Google Scholar] [CrossRef]
- Kamble, R.G.; Raykar, N.; Jadhav, D. Machine learning approach to predict fatigue crack growth. Mater. Today Proc. 2021, 38, 2506–2511. [Google Scholar] [CrossRef]
- Mythreyi, O.; Srinivaas, M.; Kumar, T.A.; Jayaganthan, R. Machine-Learning-Based Prediction of Corrosion Behavior in Additively Manufactured Inconel 718. Data 2021, 6, 80. [Google Scholar] [CrossRef]
- Cui, C.; Hu, B.; Zhao, L.; Liu, S. Titanium alloy production technology, market prospects and industry development. Mater. Des. 2011, 32, 1684–1691. [Google Scholar] [CrossRef]
- Galarraga, H.; Warren, R.; Lados, D.; Dehoff, R.R.; Kirka, M.M.; Nandwana, P. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Mater. Sci. Eng. A 2017, 685, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Rack, H. Phase transformations during cooling in α + β titanium alloys. Mater. Sci. Eng. A 1998, 243, 206–211. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, J.C. Perspectives on Titanium Science and Technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Leuders, S.; Lieneke, T.; Lammers, S.; Tröster, T.; Niendorf, T. On the fatigue properties of metals manufactured by selective laser melting—The role of ductility. J. Mater. Res. 2014, 29, 1911–1919. [Google Scholar] [CrossRef]
Post Processing Technique | Built Orientation |
---|---|
As Built | XY |
Stress Relieved | XZ |
Heat Treated | ZX |
As Built | XY |
Stress Relieved | XZ |
Heat Treated | ZX |
As Built | XY |
Stress Relieved | XZ |
Heat Treated | ZX |
Post Processing | Built Orientation | ∆K | Crack Growth Rate (m/Cycle) |
---|---|---|---|
As Built | XY | 20.7 | 3.87 × 10−7 |
Heat Treated | XZ | 22.5 | 2.83 × 10−7 |
Stress Relieved | ZX | 14.3 | 1.05 × 10−7 |
Hyper Parameters | Values |
---|---|
Booster | Dart |
Learning Rate | 0.084 |
Maximum depth | 3 |
Estimators | 96 |
Alpha | 0.188 |
Lambda | 0.0088 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konda, N.; Verma, R.; Jayaganthan, R. Machine Learning Based Predictions of Fatigue Crack Growth Rate of Additively Manufactured Ti6Al4V. Metals 2022, 12, 50. https://doi.org/10.3390/met12010050
Konda N, Verma R, Jayaganthan R. Machine Learning Based Predictions of Fatigue Crack Growth Rate of Additively Manufactured Ti6Al4V. Metals. 2022; 12(1):50. https://doi.org/10.3390/met12010050
Chicago/Turabian StyleKonda, Nithin, Raviraj Verma, and Rengaswamy Jayaganthan. 2022. "Machine Learning Based Predictions of Fatigue Crack Growth Rate of Additively Manufactured Ti6Al4V" Metals 12, no. 1: 50. https://doi.org/10.3390/met12010050
APA StyleKonda, N., Verma, R., & Jayaganthan, R. (2022). Machine Learning Based Predictions of Fatigue Crack Growth Rate of Additively Manufactured Ti6Al4V. Metals, 12(1), 50. https://doi.org/10.3390/met12010050