Effect of Multistage High Temperature Thermomechanical Treatment on the Microstructure and Mechanical Properties of Austenitic Reactor Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SEM EBSD and TEM Studies of Deformed Microstructure
3.2. Mechanical Properties
4. Discussion
4.1. Grain Refinement and Substructure Formation
4.2. Comparison of Mechanical Properties
4.3. Dynamic Strain Aging during Tensile Tests at 650 °C
5. Conclusions
- Under HTMTs, structural states with the pancake grain structure are formed, which is characterized by grains elongated in the rolling direction and flattened in the rolling plane. The average grain size is 1.8 μm, which is 10.7 μm less than in the ST. A high density of low-angle boundaries up to ≈ 80% (in the section perpendicular to ND) and up to ≈55% (in the section perpendicular to TD) was found inside the fragmented grains.
- Additional cold deformation with e = 0.3 (after HTMTs) allows the creation of a high density of micro- and nanotwins of deformation in fragmented grains. Low-angle boundaries are not obstacles for microtwins propagation. At the same time, coarse and finely dispersed particles of the MX type are preserved without their additional precipitation after all treatments.
- The tensile tests at a strain rate of~10−3 s−1 showed that the obtained microstructure provides high strength properties of steel: yield strength ≈ 580 MPa and 910 MPa, tensile strength ≈ 700 MPa and 1040 MPa at 650 °C and 20 °C, respectively.
- At elevated tensile temperatures, serrated flow is observed on the curves due to the DSA effect. The high density of low and high angle boundaries formed as a result of HTMT-3 and HTMT-3 + CR inhibits the dislocation motion and suppresses the DSA effect during tensile tests.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
The List of Nomenclature
HTMT | high-temperature thermomechanical treatment |
e | true strain degree |
SEM | scanning electron microscopy |
EBSD | electron backscatter diffraction |
TEM | transmission electron microscopy |
ST | solution treatment |
DRX | dynamic recrystallization |
HR | hot rolling deformation |
WR | warm rolling deformation |
CR | cold rolling deformation |
ND | normal direction |
TD | transverse direction |
STEM | scanning transmission electron microscopy |
Σ3 | special boundaries of misorientation angle |
ZA | zone axis |
𝛾 | austenite |
BF | bright-field image |
SAED | selected area electron diffraction |
𝛾tw | mechanical twins of austenite |
YS | yield strength |
TS | tensile strength |
El. | elongation to failure |
DSA | dynamic strain aging |
References
- Yvon, P. Structural Materials for Generation IV Nuclear Reactors; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780081009062. [Google Scholar] [CrossRef]
- Garner, F.A. Radiation-induced damage in austenitic structural steels used in nuclear reactors. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R.J.M., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 3, pp. 57–168. [Google Scholar] [CrossRef]
- Odette, R.G.; Zinkle, S.J. Structural Alloys for Nuclear Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780123970466. [Google Scholar] [CrossRef]
- Kozlov, A.; Kozlov, K.; Portnykh, I. The evolution of helium-vacancy bubbles in austenitic steels under neutron irradiation. J. Nucl. Mater. 2021, 549, 152915. [Google Scholar] [CrossRef]
- Portnykh, I.A.; Kozlov, A.V.; Panchenko, V.L.; Mitrofanova, N.M. Characteristics of radiation porosity formed upon irradiation in a BN-600 reactor in the fuel-element cans of cold-deformed steel EK-164 (06Kh16N20M2G2BTFR)-ID c.d. Phys. Met. Metallogr. 2012, 113, 520–531. [Google Scholar] [CrossRef]
- Portnykh, I.A.; Kozlov, A.V.; Panchenko, V.L. Effect of dose and temperature parameters of neutron irradiation to maximum damaging dose of 77 dpa on characteristics of porosity formed in steel 0.07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B. Phys. Met. Metallogr. 2014, 115, 625–633. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies—Operational Behavior: IAEA Nuclear Energy Series No. NF-T-4.3; International Atomic Energy Agency: Vienna, Austria, 2012; ISBN 9789201275103. [Google Scholar]
- Akkuzin, S.A.; Litovchenko, I.Y. The influence of deformation and short-term high-temperature annealing on the microstructure and mechanical properties of austenitic steel 17Cr-14Ni-3Mo (316 type). Russ. Phys. J. 2019, 62, 1511–1517. [Google Scholar] [CrossRef]
- Yan, F.K.; Liu, G.Z.; Tao, N.R.; Lu, K. Strength and ductility of 316 austenitic stainless steel strengthened by nano-scale twin bundles. Acta Mater. 2012, 60, 1059–1071. [Google Scholar] [CrossRef]
- Dehghan-Manshadi, A.; Barnett, M.R.; Hodgson, P.D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation. Mater. Sci. Eng. A 2008, 485, 664–672. [Google Scholar] [CrossRef]
- Nkhoma, R.K.C.; Siyasiya, C.W.; Stumpf, W.E. Hot workability of AISI 321 and AISI 304 austenitic stainless steels. J. Alloys Compd. 2014, 595, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Sun, Y.; Zhang, R.; Wang, M.; Tang, R.; Zhou, Z. Hot deformation behavior and microstructural evolution of a modified 310 austenitic steel. Mater. Des. 2014, 64, 374–380. [Google Scholar] [CrossRef]
- Yanushkevich, Z.; Lugovskaya, A.; Belyakov, A.; Kaibyshev, R. Deformation microstructures and tensile properties of an austenitic stainless steel subjected to multiple warm rolling. Mater. Sci. Eng. A 2016, 667, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Ghazani, M.S.; Eghbali, B. Characterization of the hot deformation microstructure of AISI 321 austenitic stainless steel. Mater. Sci. Eng. A 2018, 730, 380–390. [Google Scholar] [CrossRef]
- Litovchenko, I.; Akkuzin, S.; Polekhina, N.; Almaeva, K.; Moskvichev, E. Structural transformations and mechanical properties of metastable austenitic steel under high temperature thermomechanical treatment. Metals 2021, 11, 645. [Google Scholar] [CrossRef]
- Dolzhenko, P.; Tikhonova, M.; Kaibyshev, R.; Belyakov, A. Peculiarities of DRX in a highly-alloyed austenitic stainless steel. Materials 2021, 14, 4004. [Google Scholar] [CrossRef]
- Zhao, D.; Ren, L.; Wang, Y.; Wang, W.; Zhu, Z.; Fu, W. Hot deformation behaviors of as cast 321 austenitic stainless steel. Metals 2021, 11, 1245. [Google Scholar] [CrossRef]
- Li, H.; Gao, L.; Song, Y.; Ma, L.; Liu, H.; Li, J.; Zhao, G. Flow stress behavior and microstructure evolution of austenitic stainless steel with low copper content during hot compression deformation. Crystals 2021, 11, 1408. [Google Scholar] [CrossRef]
- Akkuzin, S.A.; Litovchenko, I.Y.; Tyumentsev, A.N.; Chernov, V.M. Microstructure and mechanical properties of austenitic steel EK-164 after thermomechanical treatments. Russ. Phys. J. 2019, 62, 698–704. [Google Scholar] [CrossRef]
- Wang, S.J.; Jozaghi, T.; Karaman, I.; Arroyave, R.; Chumlyakov, Y.I. Hierarchical evolution and thermal stability of microstructure with deformation twins in 316 stainless steel. Mater. Sci. Eng. A 2017, 694, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Torganchuk, V.; Belyakov, A.; Kaibyshev, R. Effect of rolling temperature on microstructure and mechanical properties of 18%Mn TWIP/TRIP steels. Mater. Sci. Eng. A 2017, 708, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Yanushkevich, Z.; Dobatkin, S.V.; Belyakov, A.; Kaibyshev, R. Hall-Petch relationship for austenitic stainless steels processed by large strain warm rolling. Acta Mater. 2017, 136, 39–48. [Google Scholar] [CrossRef]
- Belyakov, A.; Miura, H.; Sakai, T. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. Mater. Sci. Eng. A 1998, 255, 139–147. [Google Scholar] [CrossRef]
- Li, C.; Huang, L.; Zhao, M.; Zhang, X.; Li, P. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modelling. Mater. Sci. Eng. A 2020, 797, 139925. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, L.; Li, C.; Li, P. Evaluation of the deformation behaviors and hot workability of a high-strength low-alloy steel. Mat. Sci. Eng. A 2021, 810, 141031. [Google Scholar] [CrossRef]
- Donadille, C.; Valle, R.; Dervin, P.; Penelle, R. Development of texture and microstructure during cold-rolling and annealing of f.c.c. alloys: Example of an austenitic stainless steel. Acta Metall. 1989, 37, 1547–1571. [Google Scholar] [CrossRef]
- Huang, A.; Wang, Z.; Liu, X.; Yuan, Q.; Ye, J.; Zhang, Y. Dynamic strain aging and serrated flow behavior of Cr-Ti-B low carbon steel during warm deformation. Mater. Charact. 2021, 172, 110828. [Google Scholar] [CrossRef]
- Nikulin, I.; Kaibyshev, R. Deformation behavior and the Portevin-Le Chatelier effect in a modified 18Cr–8Ni stainless steel. Mater. Sci. Eng. A 2011, 528, 1340–1347. [Google Scholar] [CrossRef]
- Kim, D.W.; Ryu, W.-S.; Hong, J.H. Effect of nitrogen on the dynamic strain ageing behavior of type 316L stainless steel. J. Mater. Sci. 1998, 33, 675–679. [Google Scholar] [CrossRef]
- Rodriguez, P.; Venkadesan, S. Serrated plastic flow revisited. Solid State Phenom. 1995, 42–43, 257–266. [Google Scholar]
- Akkuzin, S.A.; Litovchenko, I.Y. Features of mechanical properties of reactor austenite steel under conditions of tensile tests at various temperatures. Appl. J. Tambov Univ. Reports. Ser. Nat. Technol. Sci. 2018, 23, 11–14. (In Russian) [Google Scholar] [CrossRef]
Fe | Ni | Cr | Mo | Mn | Si | Ti | Nb | V | C |
---|---|---|---|---|---|---|---|---|---|
bal. | 17.92 | 15.93 | 2.4 | 1.74 | 0.68 | 0.4 | 0.28 | 0.12 | 0.07 |
Treatment | Temp. Tensile Tests, °C | YS, MPa | TS, MPa | El., % |
---|---|---|---|---|
ST | 20 650 | 201.4 ± 2 95 ± 6.3 | 539.2 ± 9.6 360.2 ± 8.8 | 47.4 ± 0.1 31 ± 1.6 |
HTMT-1 | 20 650 | 425.8 ± 16.8 297.3 ± 42.7 | 598 ± 0.4 431.3 ± 5.9 | 23.4 ± 0.7 16.3 ± 4.1 |
HTMT-2 | 20 650 | 642.9 ± 21.1 472.7 ± 22.3 | 731.5 ± 16.8 522.2 ± 1.6 | 11.4 ± 1.1 4.5 ± 1 |
HTMT-3 | 20 650 | 764.8 ± 1.6 521 ± 17.7 | 859.9 ± 12.2 589.8 ± 39.3 | 7.8 ± 0.4 4.8 ± 0.7 |
HTMT-3 + CR | 20 650 | 911.9 ± 25 580.2 ± 5.2 | 1041.4 ± 34.7 706.5 ± 39.9 | 5.4 ± 0.6 6.1 ± 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkuzin, S.; Litovchenko, I.; Polekhina, N.; Almaeva, K.; Kim, A.; Moskvichev, E.; Chernov, V. Effect of Multistage High Temperature Thermomechanical Treatment on the Microstructure and Mechanical Properties of Austenitic Reactor Steel. Metals 2022, 12, 63. https://doi.org/10.3390/met12010063
Akkuzin S, Litovchenko I, Polekhina N, Almaeva K, Kim A, Moskvichev E, Chernov V. Effect of Multistage High Temperature Thermomechanical Treatment on the Microstructure and Mechanical Properties of Austenitic Reactor Steel. Metals. 2022; 12(1):63. https://doi.org/10.3390/met12010063
Chicago/Turabian StyleAkkuzin, Sergey, Igor Litovchenko, Nadezhda Polekhina, Kseniya Almaeva, Anna Kim, Evgeny Moskvichev, and Vyacheslav Chernov. 2022. "Effect of Multistage High Temperature Thermomechanical Treatment on the Microstructure and Mechanical Properties of Austenitic Reactor Steel" Metals 12, no. 1: 63. https://doi.org/10.3390/met12010063
APA StyleAkkuzin, S., Litovchenko, I., Polekhina, N., Almaeva, K., Kim, A., Moskvichev, E., & Chernov, V. (2022). Effect of Multistage High Temperature Thermomechanical Treatment on the Microstructure and Mechanical Properties of Austenitic Reactor Steel. Metals, 12(1), 63. https://doi.org/10.3390/met12010063