Cyclic Extrusion Compression Process for Achieving Ultrafine-Grained 5052 Aluminum Alloy with Eminent Strength and Wear Resistance
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Tensile Properties
3.2. Microstructure Evolution
3.3. Wear Behavior
4. Conclusions
- The yield and ultimate tensile strength of the AA5052 improved significantly after the first pass, while the elongation-to-failure decreased considerably. The subsequent passes mildly changed the trend of increasing strength and reducing elongation. In this regard, the yield strength, ultimate tensile strength, and elongation-to-failure of the alloy changed from 121.2 MPa, 314.5 MPa, and 33.72% for the initial annealed state to 306.8 MPa, 465.9 MPa, and 11.02% for the final pass state, respectively. Moreover, the strain-hardening exponents of the alloy before and after the first, second, and fourth passes were 0.238, 0.127, 0.088, and 0.075, respectively;
- Grain refinement during the CEC process included the formation of dislocation cell structures, subgrain boundaries, and low-angle grain boundaries. In this regard, subgrains were developed from dislocation cells. Further, the subgrain boundaries initially became low-angle grain boundaries and, eventually, through the imposition of additional plastic strain, transformed into high-angle grain boundaries;
- The CEC process and increases in the number of passes led to a significant improvement in the wear resistance of the AA5052 due to the enhanced tensile strength from grain refinement. In this regard, the mass loss of the AA5052 in the states before and after the four-pass CEC process decreased from 15.61 mg to 4.42 mg and from 9.57 mg to 2.75 mg for the applied normal loads of 2 N and 20 N, respectively. The wear mechanism in the initial annealed alloy was a combination of adhesion and delamination with plastic deformation bands along the sliding direction. The CEC process and the increased number of passes transformed the plastic deformation bands on the worn surface into plowing ones. Further, the adhesion wear mechanism was significantly attenuated. Moreover, oxidization was found to be a mechanism contributing to wear, as oxygen was detectable under all conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Donelan, P. Modelling microstructural and mechanical properties of ferritic ductile cast iron. Mater. Sci. Technol. 2000, 16, 261–269. [Google Scholar] [CrossRef]
- Rosa, D.M.; Spinelli, J.E.; Osório, W.R.; Garcia, A. Effects of cell size and macrosegregation on the corrosion behavior of a dilute Pb–Sb alloy. J. Power Sources 2006, 162, 696–705. [Google Scholar] [CrossRef]
- Petch, N.J. The Cleavage Strength of Polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Bonatti, R.S.; Siqueira, R.R.; Padilha, G.S.; Bortolozo, A.D.; Osório, W.R. Distinct Alp/Sip composites affecting its densification and mechanical behavior. J. Alloy. Compd. 2018, 757, 434–447. [Google Scholar] [CrossRef]
- Lloyd, D.J.; Court, S.A. Influence of grain size on tensile properties of Al-Mg alloys. Mater. Sci. Technol. 2003, 19, 1349–1354. [Google Scholar] [CrossRef]
- Luo, P.; McDonald, D.; Xu, W.; Palanisamy, S.; Dargusch, M.; Xia, K. A modified Hall–Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing. Scr. Mater. 2012, 66, 785–788. [Google Scholar] [CrossRef]
- Valiev, R. Nanostructuring of metallic materials by spd processing for advanced properties. Int. J. Mater. Res. 2009, 100, 757–761. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Kral, P.; Dvorak, J.; Sklenicka, V.; Horita, Z.; Takizawa, Y.; Tang, Y.; Kunčická, L.; Kvapilova, M.; Ohankova, M. Influence of High Pressure Sliding and Rotary Swaging on Creep Behavior of P92 Steel at 500 °C. Metals 2021, 11, 2044. [Google Scholar] [CrossRef]
- Langdon, T.G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 2013, 61, 7035–7059. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Shaeri, M.H.; Naseri, R.; Gode, C. Equal channel angular extrusion for tube configuration of Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 2018, 731, 569–576. [Google Scholar] [CrossRef]
- Nazari, F.; Honarpisheh, M.; Zhao, H. The effect of microstructure parameters on the residual stresses in the ultrafine-grained sheets. Micron 2020, 132, 102843. [Google Scholar] [CrossRef] [PubMed]
- Nazari, F.; Honarpisheh, M. Analytical and experimental investigation of deformation in constrained groove pressing process. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 233, 3751–3759. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, S.; Feng, A.; Shen, J. Achieving grain refinement and enhanced mechanical properties in Ti–6Al–4V alloy produced by multidirectional isothermal forging. Mater. Sci. Eng. A 2017, 692, 127–138. [Google Scholar] [CrossRef]
- Attarilar, S.; Djavanroodi, F.; Ebrahimi, M.; Al-Fadhalah, K.J.; Wang, L.; Mozafari, M. Hierarchical Microstructure Tailoring of Pure Titanium for Enhancing Cellular Response at Tissue-Implant Interface. J. Biomed. Nanotechnol. 2021, 17, 115–130. [Google Scholar] [CrossRef]
- Fan, R.-J.; Attarilar, S.; Shamsborhan, M.; Ebrahimi, M.; Göde, C.; Özkavak, H.V. Enhancing mechanical properties and corrosion performance of AA6063 aluminum alloys through constrained groove pressing technique. Trans. Nonferrous Met. Soc. China 2020, 30, 1790–1802. [Google Scholar] [CrossRef]
- Segal, V. Equal-Channel Angular Extrusion (ECAE): From a Laboratory Curiosity to an Industrial Technology. Metals 2020, 10, 244. [Google Scholar] [CrossRef]
- Rogachev, S.O.; Nikulin, S.A.; Khatkevich, V.M.; Sundeev, R.V.; Komissarov, A.A. Features of Structure Formation in Layered Metallic Materials Processed by High Pressure Torsion. Met. Mater. Trans. A 2020, 51, 1781–1788. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Attarilar, S.; Djavanroodi, F.; Gode, C.; Kim, H. Wear properties of brass samples subjected to constrained groove pressing process. Mater. Des. 2014, 63, 531–537. [Google Scholar] [CrossRef]
- Kaykha, M.M.; Dashtbayazi, M.R. An Improvement in Constrained Studded Pressing for Producing Ultra-Fine-Grained Copper Sheet. Metals 2022, 12, 193. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, R.; Hou, L.; Zhang, J.; Zhang, M. Mathematical analysis and its experimental comparisons for the accumulative roll bonding (ARB) process with different superimposed layers. J. Magnes. Alloy. 2021, 9, 1741–1752. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Shamsborhan, M. Monotonic and dynamic mechanical properties of PTCAE aluminum. J. Alloy. Compd. 2017, 705, 28–37. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Djavanroodi, F.; Tiji, S.A.N.; Gholipour, H.; Gode, C. Experimental Investigation of the Equal Channel Forward Extrusion Process. Metals 2015, 5, 471–483. [Google Scholar] [CrossRef]
- Djavanroodi, F.; Ebrahimi, M.; Nayfeh, J.F. Tribological and mechanical investigation of multi-directional forged nickel. Sci. Rep. 2019, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Wu, Q.; Bi, K.; Wang, J.; Xu, T.; Kong, F. Effect of Multi-Directional Forging on the Microstructure and Mechanical Properties of β-Solidifying TiAl Alloy. Materials 2019, 12, 1381. [Google Scholar] [CrossRef]
- Mahmoud, E.R.I.; Almohamadi, H.; Aljabri, A.; Khan, S.Z.; Saquib, A.N.; Farhan, M.; Elkotb, M.A.-G. Fabrication and Characterization of Steel-Base Metal Matrix Composites Reinforced by Yttria Nanoparticles through Friction Stir Processing. Materials 2021, 14, 7611. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Zhang, L.; Wang, Q.; Zhou, H.; Li, W. Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression. J. Magnes. Alloy. 2021, in press. [Google Scholar] [CrossRef]
- Attarilar, S.; Salehi, M.T.; Al-Fadhalah, K.J.; Djavanroodi, F.; Mozafari, M. Functionally graded titanium implants: Characteristic enhancement induced by combined severe plastic deformation. PLoS ONE 2019, 14, e0221491. [Google Scholar] [CrossRef]
- Shamsborhan, M.; Ebrahimi, M. Production of nanostructure copper by planar twist channel angular extrusion process. J. Alloy. Compd. 2016, 682, 552–556. [Google Scholar] [CrossRef]
- Moazam, M.A.; Honarpisheh, M. Ring-core integral method to measurement residual stress distribution of Al-7075 alloy processed by cyclic close die forging. Mater. Res. Express 2019, 6, 0865j3. [Google Scholar] [CrossRef]
- Richert, M. The effect of unlimited cumulation of large plastic strains on the structure-softening processes of 99.999 Al. Mater. Sci. Eng. A 1990, 129, 1–10. [Google Scholar] [CrossRef]
- Richert, M.; Zasadziński, J.; Hawryłkiewicz, S.; Długopolski, J. Effect of large deformations on the microstructure of aluminium alloys. Mater. Chem. Phys. 2003, 81, 528–530. [Google Scholar] [CrossRef]
- Wang, L.-P.; Jiang, W.-Y.; Chen, T.; Feng, Y.-C.; Zhou, H.-Y.; Zhao, S.-C.; Liang, Z.-Q.; Zhu, Y. Spheroidal microstructure formation and thixoforming of AM60B magnesium alloy prepared by SIMA process. Trans. Nonferrous Met. Soc. China 2012, 22, s435–s444. [Google Scholar] [CrossRef]
- Peng, T.; Wang, Q.; Han, Y.; Zheng, J.; Guo, W. Consolidation behavior of Mg–10Gd–2Y–0.5Zr chips during solid-state recycling. J. Alloy. Compd. 2010, 503, 253–259. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Wang, Q.-D.; Lin, J.-B.; Liu, M.-P.; Hjelen, J.; Roven, H.J. Grain refinement of magnesium alloys processed by severe plastic deformation. Trans. Nonferrous Met. Soc. China 2014, 24, 3747–3754. [Google Scholar] [CrossRef]
- Torabi, H.; Faraji, G.; Masoumi, A. Processing characterization of binary Mg-Zn alloys fabricated by a new powder consolidation combined severe plastic deformation method. J. Alloy. Compd. 2020, 832, 154922. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Wang, Q.; Attarilar, S. A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques. Prog. Mater. Sci. 2023, 131, 101016. [Google Scholar] [CrossRef]
- Starke, E.A., Jr.; Staley, J.T. Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 1996, 32, 131–172. [Google Scholar] [CrossRef]
- Wan, B.; Chen, W.; Lu, T.; Liu, F.; Jiang, Z.; Mao, M. Review of solid state recycling of aluminum chips. Resour. Conserv. Recycl. 2017, 125, 37–47. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Gholipour, H.; Djavanroodi, F. A study on the capability of equal channel forward extrusion process. Mater. Sci. Eng. A 2016, 650, 1–7. [Google Scholar] [CrossRef]
- Attarilar, S.; Ebrahimi, M.; Hsieh, T.-H.; Uan, J.-Y.; Göde, C. An insight into the vibration-assisted rolling of AA5052 aluminum alloy: Tensile strength, deformation microstructure, and texture evolution. Mater. Sci. Eng. A 2021, 803, 140489. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Liu, G.; Wang, Q.; Jiang, H.; Ding, W.; Shang, Z.; Luo, L. Evaluation of interface structure and high-temperature tensile behavior in Cu/Al8011/Al5052 trilayered composite. Mater. Sci. Eng. A 2020, 798, 140129. [Google Scholar] [CrossRef]
- Ansarian, I.; Shaeri, M.; Ebrahimi, M.; Minárik, P.; Bartha, K. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. J. Alloy. Compd. 2019, 776, 83–95. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Gupta, A.K.; Padisala, S.K.; Poluri, K. Characterization of mechanical and microstructural properties of constrained groove pressed nitinol shape memory alloy for biomedical applications. Mater. Sci. Eng. C 2019, 102, 730–742. [Google Scholar] [CrossRef]
- Miura, H.; Yu, G.; Yang, X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties. Mater. Sci. Eng. A 2011, 528, 6981–6992. [Google Scholar] [CrossRef]
- Murashkin, M.Y.; Sabirov, I.; Sauvage, X.; Valiev, R.Z. Nanostructured Al and Cu alloys with superior strength and electrical conductivity. J. Mater. Sci. 2016, 51, 33–49. [Google Scholar] [CrossRef]
- Moazam, M.; Honarpisheh, M. The effects of combined cyclic close die forging and aging process on microstructure and mechanical properties of AA7075. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020, 234, 1242–1251. [Google Scholar] [CrossRef]
- Wu, J.; Djavanroodi, F.; Shamsborhan, M.; Attarilar, S.; Ebrahimi, M. Improving Mechanical and Corrosion Behavior of 5052 Aluminum Alloy Processed by Cyclic Extrusion Compression. Metals 2022, 12, 1288. [Google Scholar] [CrossRef]
- Takata, N.; Lee, S.-H.; Tsuji, N. Ultrafine grained copper alloy sheets having both high strength and high electric conductivity. Mater. Lett. 2009, 63, 1757–1760. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Zhang, L.; Wang, Q.; Zhou, H.; Li, W. Damping characterization and its underlying mechanisms in CNTs/AZ91D composite processed by cyclic extrusion and compression. Mater. Sci. Eng. A 2021, 821, 141605. [Google Scholar] [CrossRef]
- Révész, Á.; Gajdics, M.; Varga, L.K.; Krállics, G.; Péter, L.; Spassov, T. Hydrogen storage of nanocrystalline Mg–Ni alloy processed by equal-channel angular pressing and cold rolling. Int. J. Hydrog. Energy 2014, 39, 9911–9917. [Google Scholar] [CrossRef] [Green Version]
- Moazam, M.; Honarpisheh, M. Improving the mechanical properties and reducing the residual stresses of AA7075 by combination of cyclic close die forging and precipitation hardening. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235, 542–549. [Google Scholar] [CrossRef]
- Ramanathan, T.; Sekar, K.; Shanmugam, N. Microstructural Evaluation and Effect of Heat Generation in FSW of AA1100. Chiang Mai J. Sci. 2022, 49, 487–495. [Google Scholar] [CrossRef]
- El Aal, M.I.A.; El Mahallawy, N.; Shehata, F.A.; El Hameed, M.A.; Yoon, E.Y.; Kim, H.S. Wear properties of ECAP-processed ultrafine grained Al–Cu alloys. Mater. Sci. Eng. A 2010, 527, 3726–3732. [Google Scholar] [CrossRef]
- Gao, L.; Cheng, X. Microstructure and dry sliding wear behavior of Cu–10%Al–4%Fe alloy produced by equal channel angular extrusion. Wear 2008, 265, 986–991. [Google Scholar] [CrossRef]
- Gao, L.; Cheng, X. Microstructure, phase transformation and wear behavior of Cu–10%Al–4%Fe alloy processed by ECAE. Mater. Sci. Eng. A 2008, 473, 259–265. [Google Scholar] [CrossRef]
- Korshunov, L.G.; Noskova, N.I.; Korznikov, A.V.; Chernenko, N.L.; Vil’Danova, N.F. Effect of severe plastic deformation on the microstructure and tribological properties of a babbit B83. Phys. Met. Met. 2009, 108, 519–526. [Google Scholar] [CrossRef]
- Wang, Z.; Tao, N.; Li, S.; Wang, W.; Liu, G.; Lu, J.; Lu, K. Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater. Sci. Eng. A 2003, 352, 144–149. [Google Scholar] [CrossRef]
- La, P.; Ma, J.; Zhu, Y.T.; Yang, J.; Liu, W.; Xue, Q.; Valiev, R.Z. Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Mater. 2005, 53, 5167–5173. [Google Scholar] [CrossRef]
- Kucukomeroglu, T. Effect of equal-channel angular extrusion on mechanical and wear properties of eutectic Al–12Si alloy. Mater. Des. 2010, 31, 782–789. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Yu, H.S.; Shin, D.H. Low sliding-wear resistance of ultrafine-grained Al alloys and steel having undergone severe plastic deformation. Int. J. Mater. Res. 2009, 100, 871–874. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ha, J.; Kim, W.J. Dry Sliding Wear Characteristics of Severely Deformed 6061 Aluminum and AZ61 Magnesium Alloys. Mater. Sci. Forum 2004, 449–452, 597–600. [Google Scholar] [CrossRef]
- Sato, H.; El Hadad, S.; Sitdikov, O.; Watanabe, Y. Effects of Processing Routes on Wear Property of Al-Al3Ti Alloys Severely Deformed by ECAP. Mater. Sci. Forum 2008, 584–586, 971–976. [Google Scholar] [CrossRef]
- Garbacz, H.; Grądzka-Dahlke, M.; Kurzydłowski, K.J. The tribological properties of nano-titanium obtained by hydrostatic extrusion. Wear 2007, 263, 572–578. [Google Scholar] [CrossRef]
- Sułkowski, B.; Janoska, M.; Boczkal, G.; Chulist, R.; Mroczkowski, M.; Pałka, P. The effect of severe plastic deformation on the Mg properties after CEC deformation. J. Magnes. Alloy. 2020, 8, 761–768. [Google Scholar] [CrossRef]
- El-Garhy, G.; El Mahallawy, N.; Shoukry, M. Effect of grain refining by cyclic extrusion compression (CEC) of Al-6061 and Al-6061/SiC on wear behavior. J. Mater. Res. Technol. 2021, 12, 1886–1897. [Google Scholar] [CrossRef]
- Ansarian, I.; Shaeri, M.H.; Ebrahimi, M.; Minárik, P. Tribological Characterization of Commercial Pure Titanium Processed by Multi-Directional Forging. Acta Met. Sin. (Engl. Lett.) 2019, 32, 857–868. [Google Scholar] [CrossRef]
- Shaeri, M.; Ebrahimi, M.; Salehi, M.; Seyyedein, S.H. Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. Prog. Nat. Sci. 2016, 26, 182–191. [Google Scholar] [CrossRef]
- Sabbaghianrad, S.; Langdon, T.G. A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT. Mater. Sci. Eng. A 2014, 596, 52–58. [Google Scholar] [CrossRef]
- Djavanroodi, F.; Ebrahimi, M.; Rajabifar, B.; Akramizadeh, S. Fatigue design factors for ECAPed materials. Mater. Sci. Eng. A 2010, 528, 745–750. [Google Scholar] [CrossRef]
- Kawasaki, M.; Foissey, J.; Langdon, T.G. Development of hardness homogeneity and superplastic behavior in an aluminum–copper eutectic alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2013, 561, 118–125. [Google Scholar] [CrossRef]
- Yogesha, K.K.; Kumar, N.; Joshi, A.; Jayaganthan, R.; Nath, S.K. A Comparative Study on Tensile and Fracture Behavior of Al–Mg Alloy Processed Through Cryorolling and Cryo Groove Rolling. Met. Microstruct. Anal. 2016, 5, 251–263. [Google Scholar] [CrossRef]
- Li, C.; Mei, Q.; Li, J.; Chen, F.; Ma, Y.; Mei, X. Hall-Petch relations and strengthening of Al-ZnO composites in view of grain size relative to interparticle spacing. Scr. Mater. 2018, 153, 27–30. [Google Scholar] [CrossRef]
- Medvedev, A.E.; Murashkin, M.Y.; Enikeev, N.A.; Bikmukhametov, I.; Valiev, R.Z.; Hodgson, P.D.; Lapovok, R. Effect of the eutectic Al-(Ce,La) phase morphology on microstructure, mechanical properties, electrical conductivity and heat resistance of Al-4.5(Ce,La) alloy after SPD and subsequent annealing. J. Alloy. Compd. 2019, 796, 321–330. [Google Scholar] [CrossRef]
- Rogachev, S.O.; Naumova, E.A.; Lukina, E.A.; Zavodov, A.V.; Khatkevich, V.M. High Strength Al–La, Al–Ce, and Al–Ni Eutectic Aluminum Alloys Obtained by High-Pressure Torsion. Materials 2021, 14, 6404. [Google Scholar] [CrossRef]
- Sun, Y.; Chang, H.; Fang, Z.; Dong, Y.; Dan, Z.; Guo, Y.; Zhou, L. Study on Microstructure and Mechanical Properties of Low Cost Ti-Fe-B Alloy. MATEC Web Conf. 2020, 321, 11029. [Google Scholar] [CrossRef]
- El Aal, M.I.A. The influence of ECAP and HPT processing on the microstructure evolution, mechanical properties and tribology characteristics of an Al6061 alloy. J. Mater. Res. Technol. 2020, 9, 12525–12546. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Alexandrov, I.V.; Zhu, Y.T.; Lowe, T.C. Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation. J. Mater. Res. 2002, 17, 5–8. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y. Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. JOM 2016, 68, 1216–1226. [Google Scholar] [CrossRef]
- Moradpour, M.; Khodabakhshi, F.; Eskandari, H. Dynamic strain aging behavior of an ultra-fine grained Al-Mg alloy (AA5052) processed via classical constrained groove pressing. J. Mater. Res. Technol. 2019, 8, 630–643. [Google Scholar] [CrossRef]
- Liu, M.; Roven, H.J.; Yu, Y.; Werenskiold, J.C. Deformation structures in 6082 aluminium alloy after severe plastic deformation by equal-channel angular pressing. Mater. Sci. Eng. A 2008, 483-484, 59–63. [Google Scholar] [CrossRef]
- Kamikawa, N.; Huang, X.; Tsuji, N.; Hansen, N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 2009, 57, 4198–4208. [Google Scholar] [CrossRef]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. The Mobility and Migration of Boundaries. In Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2004; pp. 121–167. [Google Scholar]
- Kaibyshev, R.; Malopheyev, S. Mechanisms of Dynamic Recrystallization in Aluminum Alloys. Mater. Sci. Forum 2014, 794–796, 784–789. [Google Scholar] [CrossRef]
- Gourdet, S.; Montheillet, F. A model of continuous dynamic recrystallization. Acta Mater. 2003, 51, 2685–2699. [Google Scholar] [CrossRef]
- Zhilyaev, A.; Shakhova, I.; Morozova, A.; Belyakov, A.; Kaibyshev, R. Grain refinement kinetics and strengthening mechanisms in Cu–0.3Cr–0.5Zr alloy subjected to intense plastic deformation. Mater. Sci. Eng. A 2015, 654, 131–142. [Google Scholar] [CrossRef]
- Cabibbo, M. Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys. Mater. Sci. Eng. A 2013, 560, 413–432. [Google Scholar] [CrossRef]
- Lanjewar, H.; Kestens, L.A.; Verleysen, P. Damage and strengthening mechanisms in severely deformed commercially pure aluminum: Experiments and modeling. Mater. Sci. Eng. A 2021, 800, 140224. [Google Scholar] [CrossRef]
- Morris, D.G.; Gutierrez-Urrutia, I.; Muñoz-Morris, M.A. Analysis of strengthening mechanisms in a severely-plastically-deformed Al–Mg–Si alloy with submicron grain size. J. Mater. Sci. 2007, 42, 1439–1443. [Google Scholar] [CrossRef]
- Morris, D. Strengthening mechanisms in nanocrystalline metals. In Nanostructured Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2011; pp. 299–328. [Google Scholar]
- Zhang, P.; Zhang, F.; Yan, Z.; Wang, T.; Qian, L. Wear property of low-temperature bainite in the surface layer of a carburized low carbon steel. Wear 2011, 271, 697–704. [Google Scholar] [CrossRef]
- Lü, W.; Li, G.; Zhou, Y.; Liu, S.; Wang, K.; Wang, Q. Effect of high hardness and adhesion of gradient TiAlSiN coating on cutting performance of titanium alloy. J. Alloy. Compd. 2020, 820, 153137. [Google Scholar] [CrossRef]
- Ortiz-Cuellar, E.; Hernandez-Rodriguez, M.A.L.; Sanchez, E.G. Evaluation of the tribological properties of an Al–Mg–Si alloy processed by severe plastic deformation. Wear 2011, 271, 1828–1832. [Google Scholar] [CrossRef]
- Wang, C.T.; Gao, N.; Wood, R.; Langdon, T.G. Wear behavior of an aluminum alloy processed by equal-channel angular pressing. J. Mater. Sci. 2011, 46, 123–130. [Google Scholar] [CrossRef]
Mechanical Properties | Annealed State | Pass 1 | Pass 2 | Pass 4 |
---|---|---|---|---|
YS (MPa) | 121.2 ± 8 | 177.2 ± 6 | 220.9 ± 6 | 306.8 ± 7 |
UTS (MPa) | 314.5 ± 3 | 392.1 ± 5 | 439.7 ± 6 | 465.9 ± 4 |
El (%) | 33.72 ± 1.5 | 20.71 ± 2 | 20.14 ± 2.3 | 11.02 ± 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Ebrahimi, M.; Attarilar, S.; Gode, C.; Zadshakoyan, M. Cyclic Extrusion Compression Process for Achieving Ultrafine-Grained 5052 Aluminum Alloy with Eminent Strength and Wear Resistance. Metals 2022, 12, 1627. https://doi.org/10.3390/met12101627
Wu J, Ebrahimi M, Attarilar S, Gode C, Zadshakoyan M. Cyclic Extrusion Compression Process for Achieving Ultrafine-Grained 5052 Aluminum Alloy with Eminent Strength and Wear Resistance. Metals. 2022; 12(10):1627. https://doi.org/10.3390/met12101627
Chicago/Turabian StyleWu, Jianxin, Mahmoud Ebrahimi, Shokouh Attarilar, Ceren Gode, and Mohammad Zadshakoyan. 2022. "Cyclic Extrusion Compression Process for Achieving Ultrafine-Grained 5052 Aluminum Alloy with Eminent Strength and Wear Resistance" Metals 12, no. 10: 1627. https://doi.org/10.3390/met12101627
APA StyleWu, J., Ebrahimi, M., Attarilar, S., Gode, C., & Zadshakoyan, M. (2022). Cyclic Extrusion Compression Process for Achieving Ultrafine-Grained 5052 Aluminum Alloy with Eminent Strength and Wear Resistance. Metals, 12(10), 1627. https://doi.org/10.3390/met12101627