Evaluation of Nanoscale Deformation Fields from Phase Field Crystal Simulations
Abstract
:1. Introduction
2. Phase Field Crystal Model
3. Evaluation of Nanoscale PFC Deformation and Strain Fields
3.1. Discrete Deformation Gradient and Related Strain Measures
3.2. Evaluation of Continuous Displacement and Strain Fields by Geometrical Phase Analysis
4. Examples
4.1. Discrete Deformation Fields under Non-Affine Deformation
4.2. Continuous Deformation Fields Based on Geometrical Phase Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Identification of PFC Equilibrium States
References
- Elder, K.; Katakowski, M.; Haataja, M.; Grant, M. Modeling Elasticity in Crystal Growth. Phys. Rev. Lett. 2002, 88, 245701. [Google Scholar] [CrossRef] [PubMed]
- van Teeffelen, S.; Backofen, R.; Voigt, A.; Löwen, H. Derivation of the phase-field-crystal model for colloidal solidification. Phys. Rev. E 2009, 79, 051404. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.F.; Elder, K.; Provatas, N. Phase-field-crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures. Phys. Rev. E 2010, 82, 021605. [Google Scholar] [CrossRef] [PubMed]
- Asadi, E.; Zaeem, M.A. Quantitative phase-field crystal modeling of solid-liquid interfaces for FCC metals. Comput. Mater. Sci. 2017, 127, 236–243. [Google Scholar] [CrossRef]
- Jreidini, P.; Provatas, N. Phase-field crystal model for materials with anomalous expansion during solidification and its application to the cavitation of supercooled water droplets. Phys. Rev. Mater. 2022, 6, 053404. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, L.; Deng, Q.; Zhou, W.; Luo, Z.; Lin, K. Phase field crystal simulation of dislocation configuration evolution in dynamic recovery in two dimensions. Acta Mater. 2016, 117, 238–251. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhang, H.; Tian, X.; Hou, H.; Zhao, Y. Arrangement and Decomposition of Grain Boundary Dislocations: Two-Mode Phase-Field Crystal Simulation. Front. Mater. 2022, 9, 875519. [Google Scholar] [CrossRef]
- Blixt, K.H.; Hallberg, H. Evaluation of grain boundary energy, structure and stiffness from phase field crystal simulations. Model. Simul. Mater. Sci. Eng. 2022, 30, 014002. [Google Scholar] [CrossRef]
- Blixt, K.H.; Hallberg, H. Grain boundary stiffness based on phase field crystal simulations. Mater. Lett. 2022, 318, 132178. [Google Scholar] [CrossRef]
- Blixt, K.H.; Hallberg, H. Grain boundary and particle interaction: Enveloping and pass-through mechanisms studied by 3D phase field crystal simulations. Mater. Des. 2022, 220, 110845. [Google Scholar] [CrossRef]
- Shuai, X.; Mao, H.; Tang, S.; Kong, Y.; Du, Y. Growth modes of grain boundary precipitate in aluminum alloys under different lattice misfits. J. Mater. Sci. 2022, 57, 2744–2757. [Google Scholar] [CrossRef]
- Gao, Y.; Deng, Q.; Huang, L.; Ye, L.; Wen, Z.; Luo, Z. Atomistic modeling for mechanism of crack cleavage extension on nano-scale. Comput. Mater. Sci. 2017, 130, 64–75. [Google Scholar] [CrossRef]
- Emmerich, H.; Löwen, H.; Wittkowski, R.; Gruhn, T.; Tóth, G.; Tegze, G.; Gránásy, L. Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: An overview. Adv. Phys. 2012, 61, 665–743. [Google Scholar] [CrossRef]
- Asadi, E.; Zaeem, M.A. A Review of Quantitative Phase-Field Crystal Modeling of Solid-Liquid Structures. JOM 2015, 67, 186–201. [Google Scholar] [CrossRef]
- Stefanovic, P.; Haataja, M.; Provatas, N. Phase field crystal study of deformation and plasticity in nanocrystalline materials. Phys. Rev. E 2009, 80, 046107. [Google Scholar] [CrossRef] [PubMed]
- Hirouchi, T.; Takaki, T.; Tomita, Y. Development of numerical scheme for phase field crystal deformation simulation. Comput. Mater. Sci. 2009, 44, 1192–1197. [Google Scholar] [CrossRef]
- Greenwood, M.; Ofori-Opoku, N.; Rottler, J.; Provatas, N. Modeling structural transformations in binary alloys with phase field crystals. Phys. Rev. B 2011, 84, 064104. [Google Scholar] [CrossRef]
- Salvalaglio, M.; Elder, K. Coarse-grained modeling of crystals by the amplitude expansion of the phase-field crystal model: An overview. Model. Simul. Mater. Sci. Eng. 2022, 30, 053001. [Google Scholar] [CrossRef]
- Trautt, Z.; Adland, A.; Karma, A.; Mishin, Y. Coupled motion of asymmetrical tilt grain boundaries: Molecular dynamics and phase field crystal simulations. Acta Mater. 2012, 60, 6528–6546. [Google Scholar] [CrossRef]
- Stefanovic, P.; Haataja, M.; Provatas, N. Phase-Field Crystals with Elastic Interactions. Phys. Rev. Lett. 2006, 96, 225504. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Wang, J.; Wang, Z.; Huang, Z.F. Mechanical relaxation and fracture of phase field crystals. Phys. Rev. E 2019, 99, 013302. [Google Scholar] [CrossRef] [PubMed]
- Gullett, P.; Horstemeyer, M.; Baskes, M.; Fang, H. A deformation gradient tensor and strain tensors for atomistic simulations. Model. Simul. Mater. Sci. Eng. 2008, 16, 015001. [Google Scholar] [CrossRef]
- Zimmerman, J.; Bammann, D.; Gao, H. Deformation gradients for continuum mechanical analysis of atomistic simulations. Int. J. Solids Struct. 2009, 46, 238–253. [Google Scholar] [CrossRef]
- Hÿtch, M. Geometric Phase analysis of High Resolution electron Microscope Images. Scanning Microsc. 1997, 11, 53–66. [Google Scholar]
- Hÿtch, M.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146. [Google Scholar] [CrossRef]
- Bernal, F.; Backofen, R.; Voigt, A. Elastic interactions in phase-field crystal models: Numerics and postprocessing. Int. J. Mater. Res. 2010, 101, 467–472. [Google Scholar] [CrossRef]
- Rickhey, F.; Hong, S. Stress Triaxiality in Anisotropic Metal Sheets - Definition and Experimental Acquisition for Numerical Damage Prediction. Materials 2022, 15, 3738. [Google Scholar] [CrossRef] [PubMed]
- Weertman, J.; Weertman, J. Elementary Dislocation Theory; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Greenwood, M.; Rottler, J.; Provatas, N. Phase-field-crystal methodology for modeling of structural transformations. Phys. Rev. E 2011, 83, 031601. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallberg, H.; Hult Blixt, K. Evaluation of Nanoscale Deformation Fields from Phase Field Crystal Simulations. Metals 2022, 12, 1630. https://doi.org/10.3390/met12101630
Hallberg H, Hult Blixt K. Evaluation of Nanoscale Deformation Fields from Phase Field Crystal Simulations. Metals. 2022; 12(10):1630. https://doi.org/10.3390/met12101630
Chicago/Turabian StyleHallberg, Håkan, and Kevin Hult Blixt. 2022. "Evaluation of Nanoscale Deformation Fields from Phase Field Crystal Simulations" Metals 12, no. 10: 1630. https://doi.org/10.3390/met12101630
APA StyleHallberg, H., & Hult Blixt, K. (2022). Evaluation of Nanoscale Deformation Fields from Phase Field Crystal Simulations. Metals, 12(10), 1630. https://doi.org/10.3390/met12101630