Shock Hugoniot of Forged and Additively Manufactured 304L Stainless Steel
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Material and AM Processing
2.2. Hugoniot Measurements
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewandowski, J.J.; Seifi, M. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Sci. 2016, 46, 151–186. [Google Scholar] [CrossRef] [Green Version]
- Gorsse, S.; Hutchinson, C.; Gouné, M.; Banerjee, R. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 2017, 18, 584–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A 2020, 772, 138633. [Google Scholar] [CrossRef]
- Vora, J.J.; Badheka, V.J. Experimental investigation on microstructure and mechanical properties of activated TIG welded reduced activation ferritic/martensitic steel joints. J. Manuf. Process. 2017, 25, 85–93. [Google Scholar] [CrossRef]
- Laurençon, M.; de Rességuier, T.; Loison, D.; Baillargeat, J.; Domfang Ngnekou, J.N.; Nadot, Y. Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loading. Mater. Sci. Eng. A 2019, 748, 407–417. [Google Scholar] [CrossRef]
- Jones, D.R.; Fensin, S.J.; Dippo, O.; Beal, R.A.; Livescu, V.; Martinez, D.T.; Trujillo, C.P.; Florando, J.N.; Kumar, M.; Gray, G.T. Spall fracture in additive manufactured Ti-6Al-4V. J. Appl. Phys. 2016, 120, 135902. [Google Scholar] [CrossRef]
- Jones, D.R.; Fensin, S.J.; Ndefru, B.G.; Martinez, D.T.; Trujillo, C.P.; GrayIII, G.T. Spall fracture in additive manufactured tantalum. J. Appl. Phys. 2018, 124, 225902. [Google Scholar] [CrossRef]
- Gray, G., III; Livescu, V.; Rigg, P.; Trujillo, C.; Cady, C.; Chen, S.; Carpenter, J.; Lienert, T.; Fensin, S. Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. Acta Mater. 2017, 138, 140–149. [Google Scholar] [CrossRef]
- Wise, J.L.; Adams, D.P.; Nishida, E.E.; Song, B.; Maguire, M.C.; Carroll, J.; Reedlunn, B.; Bishop, J.E.; Palmer, T.A. Comparative shock response of additively manufactured versus conventionally wrought 304L stainless steel. AIP Conf. Proc. 2017, 1793, 100015. [Google Scholar] [CrossRef] [Green Version]
- Yasa, E.; Deckers, J.; Kruth, J.-P.; Rombouts, M.; Luyten, J. Charpy impact testing of metallic selective laser melting parts. Virtual Phys. Prototyp. 2010, 5, 89–98. [Google Scholar] [CrossRef]
- Zhang, B.; Dembinski, L.; Coddet, C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater. Sci. Eng. A 2013, 584, 21–31. [Google Scholar] [CrossRef]
- Verlee, B.; Dormal, T.; Lecomte-Beckers, J. Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing. Powder Met. 2012, 55, 260–267. [Google Scholar] [CrossRef]
- Cherry, J.A.; Davies, H.M.; Mehmood, S.; Lavery, N.P.; Brown, S.G.R.; Sienz, J. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 2015, 76, 869–879. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.S.; Brown, D.W.; Kumar, M.; Gallegos, G.F.; King, W.E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Met. Mater. Trans. A 2014, 45, 6260–6270. [Google Scholar] [CrossRef]
- Carlton, H.D.; Haboub, A.; Gallegos, G.F.; Parkinson, D.Y.; MacDowell, A.A. Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater. Sci. Eng. A 2016, 651, 406–414. [Google Scholar] [CrossRef] [Green Version]
- Yadollahi, A.; Shamsaei, N.; Hammi, Y.; Horstemeyer, M.F. Quantification of tensile damage evolution in additive manufactured austenitic stainless steels. Mater. Sci. Eng. A 2016, 657, 399–405. [Google Scholar] [CrossRef]
- Röttger, A.; Geenen, K.; Windmann, M.; Binner, F.; Theisen, W. Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material. Mater. Sci. Eng. A 2016, 678, 365–376. [Google Scholar] [CrossRef]
- Agrawal, A.K.; de Bellefon, G.M.; Thoma, D. High-throughput experimentation for microstructural design in additively manufactured 316L stainless steel. Mater. Sci. Eng. A 2020, 793, 139841. [Google Scholar] [CrossRef]
- Rankouhi, B.; Agrawal, A.K.; Pfefferkorn, F.E.; Thoma, D.J. A dimensionless number for predicting universal processing parameter boundaries in metal powder bed additive manufacturing. Manuf. Lett. 2020, 27, 13–17. [Google Scholar] [CrossRef]
- Simonelli, M.; Tse, Y.Y.; Tuck, C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6A1-4V. Mater. Sci. Eng. A 2014, 616, 1–11. [Google Scholar] [CrossRef]
- Pace, M.; Guarnaccio, A.; Dolce, P.; Mollica, D.; Parisi, G.; Lettino, A.; Medici, L.; Summa, V.; Ciancio, R.; Santagata, A. 3D additive manufactured 316L components microstructural features and changes induced by working life cycles. Appl. Surf. Sci. 2017, 418, 437–445. [Google Scholar] [CrossRef]
- Thomas, S.A.; Hixson, R.S.; Hawkins, M.C.; Strand, O.T. Wave speeds in single-crystal and polycrystalline copper. Int. J. Impact Eng. 2020, 139, 103506. [Google Scholar] [CrossRef]
- Fadida, R.; Rittel, D.; Shirizly, A. Dynamic Mechanical Behavior of Additively Manufactured Ti6Al4V With Controlled Voids. J. Appl. Mech. 2015, 82, 041004. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, X.; Pu, C.; Chen, W.; Chen, H.; Wang, F. Molecular dynamics modeling of the Hugoniot states of aluminum. AIP Adv. 2018, 8, 105212. [Google Scholar] [CrossRef] [Green Version]
- Chau, R.; Stölken, J.; Asoka-Kumar, P.; Kumar, M.; Holmes, N.C. Shock Hugoniot of single crystal copper. J. Appl. Phys. 2010, 107, 023506. [Google Scholar] [CrossRef] [Green Version]
- Morrow, B.M.; Lienert, T.J.; Knapp, C.M.; Sutton, J.O.; Brand, M.J.; Pacheco, R.M.; Livescu, V.; Carpenter, J.S.; Gray, G.T. Impact of Defects in Powder Feedstock Materials on Microstructure of 304L and 316L Stainless Steel Produced by Additive Manufacturing. Met. Mater. Trans. A 2018, 49, 3637–3650. [Google Scholar] [CrossRef]
- Mataya, M.; Carr, M.; Krenzer, R.; Krauss, G. Processing and Structure of High-Energy-Rate-Forged 21-6-9 and 304L Forgings; Rockwell International Corp.: Golden, CO, USA, 1981. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.I.; Adams, B.L.; Kunze, K. Application of a new automatic lattice orientation measurement technique to polycrystalline aluminum. Mater. Sci. Eng. A 1993, 160, 229–240. [Google Scholar] [CrossRef]
- Spierings, A.B.; Schneider, M.; Eggenberger, R. Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyp. J. 2011, 17, 380–386. [Google Scholar] [CrossRef]
- Arvieu, C.; Galy, C.; Le Guen, E.; Lacoste, E. Relative Density of SLM-Produced Aluminum Alloy Parts: Interpretation of Results. J. Manuf. Mater. Process. 2020, 4, 83. [Google Scholar] [CrossRef]
- Bai, S.; Perevoshchikova, N.; Sha, Y.; Wu, X. The Effects of Selective Laser Melting Process Parameters on Relative Density of the AlSi10Mg Parts and Suitable Procedures of the Archimedes Method. Appl. Sci. 2019, 9, 583. [Google Scholar] [CrossRef] [Green Version]
- Strand, O.T.; Goosman, D.R.; Martinez, C.C.; Whitworth, T.L.; Kuhlow, W.W. Compact system for high-speed velocimetry using heterodyne techniques. Rev. Sci. Instrum. 2006, 77, 083108. [Google Scholar] [CrossRef]
- Mitchell, A.C.; Nellis, W.J. Shock compression of aluminum, copper, and tantalum. J. Appl. Phys. 1981, 52, 3363–3374. [Google Scholar] [CrossRef]
- Marsh, S.P. (Ed.) LASL Shock Hugoniot Data; University of California Press: Berkeley, CA, USA, 1980. [Google Scholar]
- Forbes, J.W. Impedance Matching Technique. In Shock Wave Compression of Condensed Matter; Springer: Berlin/Heidelberg, Germany, 2012; pp. 31–57. [Google Scholar]
- Mcqueen, R.; Marsh, S.; Taylor, J.; Fritz, J.N.; Carter, W. The equation of state of solids from shock wave studies. In High Velocity Impact Phenomena; Kinslow, R., Ed.; Academic Press: Cambridge, MA, USA, 1970; pp. 293–417. [Google Scholar]
- Trunin, R.F. Shock Compression of Condensed Materials; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Choi, J.; Yoo, S.; Song, S.; Park, J.S.; Kang, K. Molecular dynamics study of Hugoniot relation in shocked nickel single crystal. J. Mech. Sci. Technol. 2018, 32, 3273–3281. [Google Scholar] [CrossRef]
- Bringa, E.M.; Cazamias, J.U.; Erhart, P.; Stölken, J.; Tanushev, N.; Wirth, B.D.; Rudd, R.E.; Caturla, M.J. Atomistic shock Hugoniot simulation of single-crystal copper. J. Appl. Phys. 2004, 96, 3793–3799. [Google Scholar] [CrossRef] [Green Version]
- Pokharel, R.; Patra, A.; Brown, D.W.; Clausen, B.; Vogel, S.C.; Gray, G.T. An analysis of phase stresses in additively manufactured 304L stainless steel using neutron diffraction measurements and crystal plasticity finite element simulations. Int. J. Plast. 2019, 121, 201–217. [Google Scholar] [CrossRef]
- Hahn, E.N.; Fensin, S.J. Influence of defects on the shock Hugoniot of tantalum. J. Appl. Phys. 2019, 125, 215902. [Google Scholar] [CrossRef]
- Luscher, D.J.; Cawkwell, M.J.; Ramos, K.J.; Sandberg, R.L.; Bolme, C.A. Interpreting Experimental Results from Shock Impacts on Single Crystal PETN in the Context of Continuum Models. Propellants Explos. Pyrotech. 2019, 45, 284–294. [Google Scholar] [CrossRef]
- Steinberg, D.J. Equation of State and Strength Properties of Selected Materials; Lawrence Livermore National Laboratory: Livermore, CA, USA, 1996. [Google Scholar]
Material | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | O | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wrought | 0.015 | 0.57 | 1.47 | 0.019 | 0.002 | 18.47 | 10.02 | 0.11 | 0.18 | 0.05 | <0.01 | Bal |
AM Powder | 0.015 | 0.53 | 1.5 | 0.012 | 0.003 | 18.4 | 9.8 | 0.0 | 0.0 | 0.05 | 0.019 | Bal |
AM Plate | 0.020 | 0.63 | 1.43 | 0.007 | 0.004 | 18.32 | 10.03 | 0.015 | 0.008 | 0.05 | 0.03 | Bal |
Experiment | Material | Thickness (mm) | Density (g/cm3) | Sound Speed (km/s) | |
---|---|---|---|---|---|
Longitudinal | Shear | ||||
172 | Forged | 2.010 ± 0.010 | 7.86 ± 0.03 | 5.78 ± 0.08 | 3.15 ± 0.06 |
173 | AM-XY1 | 1.997 ± 0.010 | 7.87 ± 0.03 | 5.77 ± 0.08 | 3.10 ± 0.06 |
174 | AM-Z1a | 1.999 ± 0.010 | 7.87 ± 0.03 | 5.72 ± 0.08 | 3.20 ± 0.06 |
176 | AM-XY2 | 2.001 ± 0.010 | 7.90 ± 0.03 | 5.80 ± 0.08 | 3.12 ± 0.06 |
177 | AM-X1 | 1.996 ± 0.010 | 7.83 ± 0.03 | 5.80 ± 0.08 | 3.16 ± 0.06 |
Experiment | Material | Velocity (km/s) | ||
---|---|---|---|---|
Impactor, UD | Particle, up | Shock, Us | ||
172 | Forged | 0.399 ± 0.003 | 0.128 ± 0.002 | 4.77 ± 0.05 |
173 | AM-XY1 | 0.400 ± 0.003 | 0.131 ± 0.002 | 4.68 ± 0.05 |
174 | AM-Z1a | 0.400 ± 0.003 | 0.132 ± 0.002 | 4.64 ± 0.05 |
176 | AM-XY2 | 0.400 ± 0.003 | 0.132 ± 0.002 | 4.66 ± 0.05 |
177 | AM-X1 | 0.395 ± 0.003 | 0.130 ± 0.002 | 4.59 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, S.A.; Hawkins, M.C.; Hixson, R.S.; Martinez, R.M.; Gray, G.T., III; Luscher, D.J.; Fensin, S.J. Shock Hugoniot of Forged and Additively Manufactured 304L Stainless Steel. Metals 2022, 12, 1661. https://doi.org/10.3390/met12101661
Thomas SA, Hawkins MC, Hixson RS, Martinez RM, Gray GT III, Luscher DJ, Fensin SJ. Shock Hugoniot of Forged and Additively Manufactured 304L Stainless Steel. Metals. 2022; 12(10):1661. https://doi.org/10.3390/met12101661
Chicago/Turabian StyleThomas, Sarah A., Michelle C. Hawkins, Robert S. Hixson, Ramon M. Martinez, George T. Gray, III, Darby J. Luscher, and Saryu J. Fensin. 2022. "Shock Hugoniot of Forged and Additively Manufactured 304L Stainless Steel" Metals 12, no. 10: 1661. https://doi.org/10.3390/met12101661
APA StyleThomas, S. A., Hawkins, M. C., Hixson, R. S., Martinez, R. M., Gray, G. T., III, Luscher, D. J., & Fensin, S. J. (2022). Shock Hugoniot of Forged and Additively Manufactured 304L Stainless Steel. Metals, 12(10), 1661. https://doi.org/10.3390/met12101661