Controlled Spintronic Emitter of THz Radiation on an Atomically Thin WS2/Silicon Substrate
Abstract
:1. Introduction
2. Materials and Methods
Sample Description and Study Method
3. Results
3.1. THz Signal Hysteresis
3.2. THz Polarization Rotation
3.3. Theoretical Modeling Terahertz Emission
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, C.; Yang, B.; Yu, Z. Terahertz Time Domain Spectroscopy for the Identification of Two Cellulosic Fibers with Similar Chemical Composition. Anal. Lett. 2013, 46, 946–958. [Google Scholar] [CrossRef]
- Notake, T.; Iyoda, T.; Arikawa, T.; Tanaka, K.; Otani, C.; Minamide, H. Dynamical visualization of anisotropic electromagnetic re-emissions from a single metal micro-helix at THz frequencies. Sci. Rep. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- di Fabrizio, M.; D’Arco, A.; Mou, S.; Palumbo, L.; Petrarca, M.; Lupi, S. Performance Evaluation of a THz Pulsed Imaging System: Point Spread Function, Broadband THz Beam Visualization and Image Reconstruction. Appl. Sci. 2021, 11, 562. [Google Scholar] [CrossRef]
- Bulbul, A.A.M.; Rahaman, H.; Biswas, S.; Hossain, M.B.; al Nahid, A. Design and numerical analysis of a PCF-based bio-sensor for breast cancer cell detection in the THz regime. Sens. Bio-Sens. Res. 2020, 30, 5419–5430. [Google Scholar] [CrossRef]
- Patil, M.R.; Ganorkar, S.B.; Patil, A.S.; Shirkhedkar, A.A. Terahertz Spectroscopy: Encoding the Discovery, Instrumentation, and Applications toward Pharmaceutical Prospectives. Crit. Rev. Anal. Chem. 2022, 52, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjoland, H.; Tufvesson, F. 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proc. IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- Song, H.J.; Lee, N. Terahertz Communications: Challenges in the Next Decade. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 105–117. [Google Scholar] [CrossRef]
- Seifert, T.; Jaiswal, S.; Martens, U.; Hannegan, J.; Braun, L.; Maldonado, P.; Freimuth, F.; Kronenberg, A.; Henrizi, J.; Radu, I.; et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 2016, 10, 483–488. [Google Scholar] [CrossRef]
- Sasaki, Y.; Takahashi, Y.; Kasai, S. Laser-induced terahertz emission in Co2MnSi/Pt structure. Appl. Phys. Express 2020, 13, 093003. [Google Scholar] [CrossRef]
- Seifert, T.S.; Tran, N.M.; Gueckstock, O.; Rouzegar, S.M.; Nadvornik, L.; Jaiswal, S.; Jakob, G.; Temnov, V.V.; Münzenberg, M.; Wolf, M.; et al. Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20. Phys. D. Appl. Phys. 2018, 51, 364003. [Google Scholar] [CrossRef]
- Ferrolino, J.P.; Cabello, N.I.; de los Reyes, A.; Bardolaza, H.; Verona, I.C.; Mag-Usara, V.K.; Afalla, J.P.; Talara, M.; Kitahara, H.; Garcia, W.; et al. Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20. Appl. Phys. Express 2021, 14, 093001. [Google Scholar] [CrossRef]
- Cheng, L.; Li, Z.; Zhao, D.; Chia, E.E.M. Studying spin–charge conversion using terahertz pulses. APL Mater. 2021, 9, 070902. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, X.; Yang, W.; Chai, J.; Yang, M.; Chen, M.; Wu, Y.; Chen, X.; Chi, D.; Goh, K.E.J.; et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys. 2019, 15, 347–351. [Google Scholar] [CrossRef]
- Kong, D.; Wu, X.; Wang, B.; Nie, T.; Xiao, M.; Pandey, C.; Gao, Y.; Wen, L.; Zhao, W.; Ruan, C.; et al. Broadband Spintronic Terahertz Emitter with Magnetic-Field Manipulated Polarizations. Adv. Opt. Mater. 2019, 7, 1900487. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X.; Shan, S.; Guo, F.; Kong, D.; Wang, C.; Nie, T.; Pandey, C.; Wen, L.; Zhao, W.; et al. Generation and manipulation of chiral broadband terahertz waves from cascade spintronic terahertz emitters. Appl. Phys. Lett. 2019, 115, 221104. [Google Scholar] [CrossRef]
- Khusyainov, D.; Ovcharenko, S.; Gaponov, M.; Buryakov, A.; Klimov, A.; Tiercelin, N.; Pernod, P.; Nozdrin, V.; Mishina, E.; Sigov, A.; et al. Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Koleják, P.; Lezier, G.; Postava, K.; Lampin, J.-F.; Tiercelin, N.; Vanwolleghem, M. 360° Polarization Control of Terahertz Spintronic Emitters Using Uniaxial FeCo/TbCo2/FeCo Trilayers. ACS Photonics. 2021, 9, 1274–1285. [Google Scholar] [CrossRef]
- Khusyainov, D.; Ovcharenko, S.; Buryakov, A.; Klimov, A.; Pernod, P.; Nozdrin, V.; Mishina, E.; Sigov, A.; Preobrazhensky, V.; Tiercelin, N. Composite Multiferroic Terahertz Emitter: Polarization Control via an Electric Field. Phys. Rev. Appl. 2022, 17, 044025. [Google Scholar] [CrossRef]
- Lezier, G.; Koleják, P.; Lampin, J.-F.; Postava, K.; Vanwolleghem, M.; Tiercelin, N. Fully reversible magnetoelectric voltage controlled THz polarization rotation in magnetostrictive spintronic emitters on PMN-PT. Appl. Phys. Lett. 2022, 120, 152404. [Google Scholar] [CrossRef]
- Khusyainov, D.; Guskov, A.; Ovcharenko, S.; Tiercelin, N.; Preobrazhensky, V.; Buryakov, A.; Sigov, A.; Mishina, E. Increasing the Efficiency of a Spintronic THz Emitter Based on WSe2/FeCo. Materials 2021, 14, 6479. [Google Scholar] [CrossRef]
- Battiato, M.; Held, K. Ultrafast and Gigantic Spin Injection in Semiconductors. Phys. Rev. Lett. 2016, 116, 196601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappert, C.; Bruno, P. Magnetic anisotropy in metallic ultrathin films and related experiments on cobalt films. J. Appl. Phys. 1988, 64, 5736–5741. [Google Scholar] [CrossRef]
- Demidov, V.V.; Borisenko, I.V.; Klimov, A.A.; Ovsyannikov, G.A.; Petrzhik, A.M.; Nikitov, S.A. Magnetic anisotropy of strained epitaxial manganite films. Exp. Theor. Phys. 2011, 112, 825–832. [Google Scholar] [CrossRef]
- Huisman, T.J.; Mikhaylovskiy, R.V.; Costa, J.D.; Freimuth, F.; Paz, E.; Ventura, J.; Freitas, P.P.; Blügel, S.; Mokrousov, Y.; Rasing, T.; et al. Femtosecond control of electric currents in metallic ferromagnetic heterostructures. Nat. Nanotechnol. 2016, 115, 455–458. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liu, Y.P.; Wang, Z.; Ma, S.J.; Jia, M.W.; Wu, R.Q.; Zhou, L.; Zhang, W.; Liu, M.K.; Wu, Y.Z.; et al. Broadband Terahertz Generation via the Interface Inverse Rashba-Edelstein Effect. Phys. Rev. Lett. 2018, 121, 086801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaurepaire, E.; Turner, G.M.; Harrel, S.M.; Beard, M.C.; Bigot, J.-Y.; Schmuttenmaer, C.A. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses. Appl. Phys. Lett. 2004, 84, 3465–3467. [Google Scholar] [CrossRef] [Green Version]
- Khusyainov, D.I.; Gorbatova, A.V.; Buryakov, A.M. Terahertz generation from surface of the bulk and monolayer tungsten diselenide. Russ. Technol. J. 2020, 8, 121–129. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, L.; Zhu, D.; Wu, Y.; Chen, M.; Wang, Y.; Zhao, D.; Boothroyd, C.B.; Lam, Y.M.; Zhu, J.; et al. Ultrafast Spin-to-Charge Conversion at the Surface of Topological Insulator Thin Films. Adv. Mater. 2018, 30, 1802356. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, R. Ultrafast Demagnetisation as a Terahertz Source, Master of Science. Master’s Thesis, School of Physics, University of Wollongong, 2014. Available online: https://ro.uow.edu.au/theses/4274 (accessed on 2 October 2022).
- Rouzegar, R.; Brandt, L.; Nadvornik, L.; Reiss, D.A.; Chekhov, A.L.; Gueckstock, O.; In, C.; Wolf, M.; Seifert, T.S.; Brouwer, P.W.; et al. Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization. arXiv 2021, arXiv:2103.11710. [Google Scholar]
- Labort-Ibarre, A.; Voisin, C.; Cassabois, G.; Delalande, C.; Flytzanis, C.; Roussignol, P.; Beauvillain, P. Ultrafast electron thermalization in a magnetic layered Au/Co/Au film. J. Appl. Phys. 2008, 104, 094301. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buryakov, A.; Gorbatova, A.; Avdeev, P.; Bezvikonnyi, N.; Abdulaev, D.; Klimov, A.; Ovcharenko, S.; Mishina, E. Controlled Spintronic Emitter of THz Radiation on an Atomically Thin WS2/Silicon Substrate. Metals 2022, 12, 1676. https://doi.org/10.3390/met12101676
Buryakov A, Gorbatova A, Avdeev P, Bezvikonnyi N, Abdulaev D, Klimov A, Ovcharenko S, Mishina E. Controlled Spintronic Emitter of THz Radiation on an Atomically Thin WS2/Silicon Substrate. Metals. 2022; 12(10):1676. https://doi.org/10.3390/met12101676
Chicago/Turabian StyleBuryakov, Arseniy, Anastasia Gorbatova, Pavel Avdeev, Nikita Bezvikonnyi, Daniil Abdulaev, Alexey Klimov, Sergei Ovcharenko, and Elena Mishina. 2022. "Controlled Spintronic Emitter of THz Radiation on an Atomically Thin WS2/Silicon Substrate" Metals 12, no. 10: 1676. https://doi.org/10.3390/met12101676
APA StyleBuryakov, A., Gorbatova, A., Avdeev, P., Bezvikonnyi, N., Abdulaev, D., Klimov, A., Ovcharenko, S., & Mishina, E. (2022). Controlled Spintronic Emitter of THz Radiation on an Atomically Thin WS2/Silicon Substrate. Metals, 12(10), 1676. https://doi.org/10.3390/met12101676