Numerical Simulation of Transport Phenomena in Directional Solidification Castings with Changeable Cross-Section and Solidification Interface Control
Abstract
:1. Introduction
2. Results and Discussion
2.1. Magnetic Fields Results and Verification
2.2. Flow and Thermal Fields
2.2.1. Influence of Natural Convection
2.2.2. Influence of Magnetic Field
3. Conclusions
4. Model Description
4.1. Electromagnetic Field Model
4.2. Solidification Model
4.3. Boundary Conditions and Computational Parameters
4.4. Solution Procedure
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Versnyder, F.I.; Shank, M.E. The development of columnar grain and single crystal high temperature materials through directional solidification. Mater. Sci. Eng. A 1970, 6, 213–247. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, T.; Wang, K.; Gao, P.; Liu, Y.; He, J. Progress on high magnetic field-controlled transport phenomena and their effects on solidification microstructure. ISIJ Int. 2014, 3, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Boden, S.; Eckert, S.; Gerbeth, G. Visualization of freckle formation induced by forced melt convection in solidifying GaIn alloys. Mater. Lett. 2010, 64, 1340–1343. [Google Scholar] [CrossRef]
- Kirincic, M.; Trp, A.; Lenic, K. Influence of natural convection during melting and solidification of paraffin in a longitudinally finned shell-and-tube latent thermal energy storage on the applicability of developed numerical models. Renew. Energy 2021, 179, 1329–1344. [Google Scholar] [CrossRef]
- Tin, S.; Pollock, T.M. Predicting freckle formation in single crystal Ni-base superalloys. J. Mater. Sci. 2004, 39, 7199–7205. [Google Scholar] [CrossRef]
- Qin, L.; Shen, J.; Feng, Z.; Shang, Z.; Fu, H. Microstructure evolution in directionally solidified Fe–Ni alloys under traveling magnetic field. Mater. Lett. 2014, 115, 155–158. [Google Scholar] [CrossRef]
- Cheng, L.; Hao, W.; Liu, R.; Wang, X.; Gong, X.; Baltaretu, F.; Fautrelle, Y. Effect of Modulated Helical Magnetic Field on Solidifying Segregation of Sn–3.5 Wt Pct Pb Alloy in a Directional Solidification. Metall. Mater. Trans. B 2022, 53, 71–83. [Google Scholar] [CrossRef]
- Utech, H.P.; Flemings, M.C. Elimination of solute banding in indium antimonide crystals by growth in a magnetic field. J. Appl. Phys. 1966, 37, 2021–2024. [Google Scholar] [CrossRef]
- Rudolph, P. Travelling magnetic fields applied to bulk crystal growth from the melt: The step from basic research to industrial scale. J. Cryst. Growth 2008, 310, 1298–1306. [Google Scholar] [CrossRef]
- Dropka, N.; Miller, W.; Menzel, R.; Rehse, U. Numerical study on transport phenomena in a directional solidification process in the presence of travelling magnetic fields. J. Cryst. Growth 2010, 312, 1407–1410. [Google Scholar] [CrossRef]
- Dropka, N.; Frank-Rotsch, C.; Rudolph, P. Numerical study on stirring of large silicon melts by Carousel magnetic fields. J. Cryst. Growth 2012, 354, 1–8. [Google Scholar] [CrossRef]
- Grants, I.; Klyukin, A.; Gerbeth, G. Instability of the melt flow in VGF growth with a traveling magnetic field. J. Cryst. Growth 2009, 311, 4255–4264. [Google Scholar] [CrossRef]
- Lantzsch, R.; Galindo, V.; Grants, I.; Zhang, C.; Pätzold, O.; Gerbeth, G.; Stelter, M. Experimental and numerical results on the fluid flow driven by a traveling magnetic field. J. Cryst. Growth 2007, 305, 249–256. [Google Scholar] [CrossRef]
- Stelian, C.; Delannoy, Y.; Fautrelle, Y.; Duffar, T. Solute segregation in directional solidification of GaInSb concentrated alloys under alternating magnetic fields. J. Cryst. Growth 2004, 266, 207–215. [Google Scholar] [CrossRef]
- Nikrityuk, P.A.; Ungarish, M.; Eckert, K.; Grundmann, R. Spin-up of a liquid metal flow driven by a rotating magnetic field in a finite cylinder: A numerical and an analytical study. Phys. Fluids 2005, 17, 067101. [Google Scholar] [CrossRef]
- Oreper, G.M.; Szekely, J. The effect of an externally imposed magnetic field on buoyancy driven flow in a rectangular cavity. J. Cryst. Growth 1983, 64, 505–515. [Google Scholar] [CrossRef]
- Becla, P.; Han, J.C.; Motakef, S. Application of strong vertical magnetic fields to growth of II–VI pseudo-binary alloys: HgMnTe. J. Cryst. Growth 1992, 121, 394–398. [Google Scholar] [CrossRef]
- Dadzis, K.; Niemietz, K.; Pätzold, O.; Wunderwald, U.; Friedrich, J. Non-isothermal model experiments and numerical simulations for directional solidification of multicrystalline silicon in a traveling magnetic field. J. Cryst. Growth 2013, 372, 145–156. [Google Scholar] [CrossRef]
- Min, Z.; Shen, J.; Feng, Z.; Wang, L.; Wang, L.; Fu, H. Effects of melt flow on the primary dendrite spacing of Pb–Sn binary alloy during directional solidification. J. Cryst. Growth 2011, 320, 41–45. [Google Scholar] [CrossRef]
- Wang, X.; Fautrelle, Y.; Etay, J.; Moreau, R. A periodically reversed flow driven by a modulated traveling magnetic field: Part I. Experiments with GaInSn. Metall. Mater. Trans. B 2009, 40, 82–90. [Google Scholar] [CrossRef]
- Xu, D.; Guo, J.; Fu, H.; Bi, W. Influences of dendrite morphologies and solid-back diffusion on macrosegregation in directionally solidified blade-like casting. Mater. Sci. Eng. A 2003, 344, 64–73. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, D.; Mao, L.; Guo, J.; Fu, H. FEM/FDM-joint simulation for transport phenomena in directionally solidifying shaped TiAl casting under electromagnetic field. ISIJ. Int. 2004, 44, 1173–1179. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Bührig-Polaczek, A. The geometrical effect on freckle formation in the directionally solidified superalloy CMSX-4. Metall. Mater. Trans. A 2014, 45, 1435–1444. [Google Scholar] [CrossRef]
- Qin, L.; Shen, J.; Li, Q.; Shang, Z. Effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy casting with abruptly varying cross-sections. J. Cryst. Growth 2017, 466, 45–55. [Google Scholar] [CrossRef]
Magnetic Field Parameters | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|
Experimental measurement (mT) | 4.5 | 4.9 | 5.2 | 5.1 | 5.5 |
Simulation (mT) | 5 | 5.2 | 5.4 | 5.5 | 5.6 |
Current intensity (A) | 8 | 8 | 8 | 8 | 8 |
Parameters | Values |
---|---|
Relative permeability of air | 1.0 |
Relative permittivity of air | 1.0 |
Relative permeability of coil | 1.0 |
Relative permeability of alloy | 1.12 |
Relative permeability of mold | 1.0 |
Mold thickness | 4 mm |
Frequency | 50 Hz |
Electric current | 0 A to 25 A |
Graphite bush electrical conductivity | 1.1 × 105 Ω−1 m−1 |
Coil electrical conductivity | 4.7 × 107 Ω−1 m−1 |
Specific heat of alloy | 684 J/(kg∙K) |
Viscosity of alloy | 6 × 10−3 Pa∙s |
Density of alloy | 8.710 × 103 kg/m3 |
Electrical conductivity of alloy | 7.69 × 105 Ω−1 m−1 |
Expansion coefficient of alloy | 1.4776 × 10−4 1/K |
Latent heat of alloy | 2.7 × 105 J/kg |
Liquidus temperature of alloy | 1.660 × 103 K |
Solidus temperature of alloy | 1.580 × 103 K |
Withdrawal rate | 120 μm/s |
Liquid diffusion coefficient of alloy | 3.6 × 10−9 m−2/s |
Solid diffusion coefficient of alloy | 0 |
Phase shift | π/3 |
Temperature of heating zone | 1500 °C |
Temperature of baffle zone | 1330 °C |
Temperature of cooling zone | 700 °C |
Temperature of cover zone | 1330 °C |
Emissivity of heating zone | 0.8 |
Emissivity of baffle zone | 0.95 |
Emissivity of cooling zone | 0.7 |
Emissivity of cover zone | 0.95 |
Quantity | T (°C) | CMSX4 (w·m−1·°C−1) | Mold (w·m−1·°C−1) |
---|---|---|---|
Thermal Conductivity | 30 | 12 | 1.92 |
200 | 13.4 | 2.08 | |
400 | 15.2 | 2.11 | |
600 | 18.1 | 2.15 | |
800 | 21.5 | 2.31 | |
1000 | 24.3 | 2.45 | |
1200 | 27.2 | 2.62 | |
1400 | 30.1 | 2.91 | |
1600 | 34.5 | 33.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhu, B.; Jiang, H.; Tan, L.; Weng, Y.; Yang, Y.; Qin, L. Numerical Simulation of Transport Phenomena in Directional Solidification Castings with Changeable Cross-Section and Solidification Interface Control. Metals 2022, 12, 1694. https://doi.org/10.3390/met12101694
Zhang Y, Zhu B, Jiang H, Tan L, Weng Y, Yang Y, Qin L. Numerical Simulation of Transport Phenomena in Directional Solidification Castings with Changeable Cross-Section and Solidification Interface Control. Metals. 2022; 12(10):1694. https://doi.org/10.3390/met12101694
Chicago/Turabian StyleZhang, Yanbin, Bin Zhu, Haijun Jiang, Li Tan, Yu Weng, Yi Yang, and Ling Qin. 2022. "Numerical Simulation of Transport Phenomena in Directional Solidification Castings with Changeable Cross-Section and Solidification Interface Control" Metals 12, no. 10: 1694. https://doi.org/10.3390/met12101694
APA StyleZhang, Y., Zhu, B., Jiang, H., Tan, L., Weng, Y., Yang, Y., & Qin, L. (2022). Numerical Simulation of Transport Phenomena in Directional Solidification Castings with Changeable Cross-Section and Solidification Interface Control. Metals, 12(10), 1694. https://doi.org/10.3390/met12101694