Fatigue Performance Evaluation of K-Type Joints in Long-Span Steel Truss Arch Bridge
Abstract
:1. Introduction
2. Method
2.1. K-Type Joint
2.2. Modeling and Parameters
2.3. Maximum Hot Spot Stress Factor
2.3.1. Influence of Thickness Ratio τ on SCFmax
2.3.2. Influence of Angle θ on SCFmax
2.3.3. Influence of Rib Stiffener on SCFmax
3. Case Study: The Mingzhu Bay Bridge
3.1. Project Overview
3.2. 3D finite Element Model
3.3. Hot Spot Stress Amplitude
3.4. Fatigue Performance Analysis
3.4.1. Standard Vehicle Load
3.4.2. Overloaded Vehicle Load
4. Conclusions
- The effect of parameters τ, θ, and rib stiffener on SCFmax were discussed. For K-type joints under axial force load in chord and web member, SCFmax is positively correlated with τ and θ, while under axial force and bending moment in chord member, thickness ratio τ and angle θ have a slight impact on SCFmax. Adding rib stiffener is the most effective way to enhance the fatigue performance of the K-type joints.
- The K-type joints of the Mingzhu Bay steel truss arch bridge were calculated as a case study. With standard vehicle load, the SCFmax of the K-type joint is near the arch support and the web and chord welded seam is found to be the vulnerable fatigue failure area, but the hot spot stress meets the Eurocode 3 specification.
- The overload rate of 25% and 50% were considered to investigate the fatigue performance of the K-type joint. With an overload rate of 25%, the hot spot stress in the welded seam of the chord and web member is over 68.89 MPa, which does not meet Eurocode 3 specifications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, W.H.; Zhong, X.G. Study on stress concentration coefficient of K-shaped tubular joints under axial load. Eng. Mech. 2010, 27, 48–52. [Google Scholar]
- Long, X. Evaluation and comparison of fatigue structural details of welded joints of steel truss bridges based on hot spot stress method. PhD Thesis, Chang’an University, Xi’an, China, 2021. [Google Scholar]
- Haldimann-Sturm, S.C.; Nussbaumer, A. Fatigue design of cast steel nodes in tubular bridge structures. Fatigue 2008, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Aygül, M.; Bokesjö, M.; Heshmati, M.; Al-Emrani, M. A comparative study of different fatigue failure assessments of welded bridge details. Int. J. Fatigue 2013, 49, 62–72. [Google Scholar] [CrossRef] [Green Version]
- EN 1993-1-9; Eurocode 3: Design of steel structures—Part 1–9: Fatigue. European Committee for Standardization: Bruxelles, Belgium, 2005.
- Zhao, X.-L.; Packer, J.A. IIW Document XIII-1804-99 and IIW Document XV-1035-99: Recommendations of IIW Subcommission XV-E. In Fatigue Design Procedure for Welded Hollow Section Joints; Abington Publishing: Cambridge, UK, 2000; ISBN 978-1-85573-522-4. [Google Scholar]
- Baptista, C.; Kannuna, S.; Pedro, J.O.; Nussbaumer, A. Fatigue behavior of CHS tubular bracings in steel bridges. Int. J. Fatigue 2017, 96, 127–141. [Google Scholar] [CrossRef]
- Cai, S.; Chen, W.; Kashani, M.M.; Vardanega, P.J.; Taylor, C.A. Fatigue life assessment of large scale T-jointed steel truss bridge components. J. Constr. Steel Res. 2017, 133, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Alencar, G.; de Jesus, A.M.; Calçada, R.A.; da Silva, J.G.S. Fatigue life evaluation of a composite steel-concrete roadway bridge through the hot-spot stress method considering progressive pavement deterioration. Eng. Struct. 2018, 166, 46–61. [Google Scholar] [CrossRef]
- Shin, W.; Chang, K.H.; Muzaffer, S. Fatigue analysis of cruciform welded joint with weld penetration defects. Eng. Fail. Anal. 2021, 120, 105111. [Google Scholar] [CrossRef]
- Peng, Y.; Dai, Z.; Chen, J.; Ju, X.; Dong, J. Fatigue behaviour of load-carrying fillet-welded cruciform joints of austenitic stainless steel. J. Constr. Steel. Res. 2021, 184, 106798. [Google Scholar] [CrossRef]
- Alencar, G.; de Jesus, A.; da Silva, J.G.S.; Calçada, R. A finite element post-processor for fatigue assessment of welded structures based on the Master S-N curve method. Int. J. Fatigue 2021, 153, 106482. [Google Scholar] [CrossRef]
- Luo, Y.; Qiu, K.; He, M.; Ma, R.; Fincato, R.; Tsutsumi, S. Fatigue performance of the slit end area of slotted CHS tube-to-gusset plate connection. Thin Wall Struct. 2022, 173, 108920. [Google Scholar] [CrossRef]
- Qiudong, W.; Libin, W.; Bohai, J.; Zhongqiu, F. Modified effective notch stress method for fatigue evaluation of rib-deck welds integrating the critical distance approach. J. Constr. Steel Res. 2022, 196, 107373. [Google Scholar] [CrossRef]
- Zhiyu, J.; Kainan, W.; Shidong, L. Residual stress influence on fatigue crack propagation of CFRP strengthened welded joints. J. Constr. Steel Res. 2022, 196, 107443. [Google Scholar]
- Tong, G.; Frangopol, D.M.; Yuwen, C. Fatigue reliability assessment of steel bridge details integrating weigh-in-motion data and probabilistic finite element analysis. Comput. Struct. 2012, 112, 245–257. [Google Scholar]
- Liu, Z.; Hebdon, M.H.; Correia, J.A.F.O.; Carvalho, H.; Vilela, P.; De Jesus AM, P.; Calçada, R.A.B. Fatigue Life Evaluation of Critical Details of the Hercílio Luz Suspension Bridge. Procedia Struct. Integr. 2017, 5, 1027–1034. [Google Scholar] [CrossRef]
- Hao, Y.; Wei, Z.; Castelluccio, G.M.; Jeongho, K.; Yongming, L. Microstructure-sensitive estimation of small fatigue crack growth in bridge steel welds. Int. J. Fatigue 2018, 112, 183–197. [Google Scholar]
- Praveen, K.R.; Mishra, S.S.; Babu, P.; Spagnoli, A.; Carpinteri, A. Multiaxial Fatigue Damage Assessment of Welded Connections in Railway Steel Bridge using Critical Plane Approach. Procedia Eng. 2018, 213, 776–787. [Google Scholar]
- Mashayekhi, M.; Santini-Bell, E. Fatigue assessment of a complex welded steel bridge connection utilizing a three-dimensional multi-scale finite element model and hotspot stress method. Eng. Struct. 2020, 214, 110624. [Google Scholar] [CrossRef]
- Horas, C.S.; De Jesus, A.M.; Calçada, R. Efficient progressive global-local fatigue assessment methodology for existing metallic railway bridges. J. Constr. Steel Res. 2022, 196, 107431. [Google Scholar] [CrossRef]
- Yuan, D.; Cui, C.; Zhang, Q.; Li, Z.; Zhongtao, y. Fatigue damage evaluation of welded joints in steel bridge based on meso-damage machanics. Int. J. Fatigue 2022, 161, 106898. [Google Scholar] [CrossRef]
- Skoglund, O.; Leander, J. A numerical evaluation of new structural details for an improved fatigue strength of steel bridges. Int. J. Fatigue 2022, 160, 106866. [Google Scholar] [CrossRef]
- Technical Specification for Fatigue of Welded Joints of Reinforced Concrete Bridges; DB51/T2515-2018; Sichuan Provincial Bureau of Quality and Technical Supervision: Sichuan, China, 2018. (In Chinese)
- Zhao, X.-L.; CIDECT. Design Guide for Circular and Rectangular Hollow Section Welded Joints under Fatigue Loading; Design Guide No.8; TÜV-Verlag: Cologne, Germany, 2000. [Google Scholar]
- Hu, H.; Zhao, J.; Ren, Y.; An, L.; Liu, Y. Overall design of main bridge of Guangzhou Pearl Bay Bridge. Bridge Constr. 2021, 51, 93–99. (In Chinese) [Google Scholar]
- Zhao, J.; Yin, G.; an, L.; Liu, Y.; Ren, Y. Mid span closure technology of main bridge of Guangzhou Pearl Bay Bridge. Bridge Constr. 2021, 51, 127–133. (In Chinese) [Google Scholar]
- Hu, H.Y.; Zhao, J.; Ren, Y.L.; An, L.M.; Liu, Y.T. Overall Design of Main Bridge of Guangzhou Mingzhu Wan Bridge. Bridge Constr. 2021, 51, 93–99. (In Chinese) [Google Scholar]
- Liu, P.; Lu, H.; Chen, Y.; Zhao, J.; An, L.; Wang, Y.; Liu, J. Fatigue Analysis of Long-Span Steel T russ Arched Bridge Part II: Fatigue Life Assessment of Suspenders Subjected to Dynamic Overloaded Moving Vehicles. Metals 2020, 6, 1035. [Google Scholar]
Chemical Composition | C | Si | Mn | P | S | Nb | V | Ti | Cr | Ni | Cu | N | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass fraction/%, ≤ | 0.20 | 0.50 | 1.70 | 0.035 | 0.035 | 0.07 | 0.20 | 0.20 | 0.30 | 0.80 | 0.30 | 0.015 | 0.20 |
Welding Position | Welding Material | Welding Current/A | Voltage/V | Welding Speed/(cm/min) |
---|---|---|---|---|
Vertical welding | E501T-1L(Φ1.2 mm) +CO2 | 140–180 | 24–26 | 40 |
Flat welding | H08MnA(Φ5 mm) +SJ101q | 220–280 | 24–26 | 40 |
FE Model No. | Parameters | ||
---|---|---|---|
θ | τ | Chord with Stiffener | |
1 | 30° | 0.25 | × |
2 | 30° | 0.5 | × |
3 | 30° | 0.75 | × |
4 | 30° | 1 | × |
5 | 45° | 0.25 | × |
6 | 45° | 0.5 | × |
7 | 45° | 0.75 | × |
8 | 45° | 1 | × |
9 | 60° | 0.25 | × |
10 | 60° | 0.5 | × |
11 | 60° | 0.75 | × |
12 | 60° | 1 | × |
13 | 60° | 0.5 | √ |
Joint No. | Focus Points on K-Type Joints | |||||
---|---|---|---|---|---|---|
a | b | c | ||||
Calculation /MPa | Eurocode 3 /MPa | Calculation /MPa | Eurocode 3 /MPa | Calculation /MPa | Eurocode 3 /MPa | |
A | 27.12 | 68.15 | 15.40 | 68.15 | 4.70 | 68.15 |
B | 46.00 | 66.67 | 45.90 | 66.67 | 43.40 | 66.67 |
C | 33.64 | 68.89 | 20.11 | 68.89 | 23.40 | 68.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Lu, H.; Chen, Y.; Zhao, J.; An, L.; Wang, Y. Fatigue Performance Evaluation of K-Type Joints in Long-Span Steel Truss Arch Bridge. Metals 2022, 12, 1700. https://doi.org/10.3390/met12101700
Liu P, Lu H, Chen Y, Zhao J, An L, Wang Y. Fatigue Performance Evaluation of K-Type Joints in Long-Span Steel Truss Arch Bridge. Metals. 2022; 12(10):1700. https://doi.org/10.3390/met12101700
Chicago/Turabian StyleLiu, Peng, Hongping Lu, Yixuan Chen, Jian Zhao, Luming An, and Yuanqing Wang. 2022. "Fatigue Performance Evaluation of K-Type Joints in Long-Span Steel Truss Arch Bridge" Metals 12, no. 10: 1700. https://doi.org/10.3390/met12101700
APA StyleLiu, P., Lu, H., Chen, Y., Zhao, J., An, L., & Wang, Y. (2022). Fatigue Performance Evaluation of K-Type Joints in Long-Span Steel Truss Arch Bridge. Metals, 12(10), 1700. https://doi.org/10.3390/met12101700