Effect of Deep Cryogenic Treatment on the Artificial Ageing Behavior of SiCp–AA2009 Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Heat Treatment
2.2. Mechanical and Microstructural Tests
3. Results and Discussion
3.1. CHT and DCT Effect on Aged Mechanical Properties
3.2. CHT and DCT Effect on Microstructures
3.2.1. SiCp and Microstructural Evolution
3.2.2. Intragranular Precipitates
3.2.3. Precipitates near Grain Boundaries
3.3. Relationship between Microstructures and Strength
4. Conclusions
- The addition of SiCp could significantly promote the ageing kinetics. Peak-ageing of SiCp–AA2009 composites appears more than 35 h earlier than that of AA2009 aluminum alloy (with peak-ageing time of more than 60 h). SiCp contributes a significant strengthening effect in the composite material, and the maximum hardness of the composite (188 HV) is much larger than that of the substrate (147 HV).
- DCT will not change the ageing trend of the composite material, but can further improve the yield strength (YS) and ultimate tensile strength (UTS) of SiCp–AA2009 composites compared with those of conventional heat treatment (CHT) strategy. YS and UTS increase by 11.4 MPa and 27.8 MPa, respectively, at the peak-ageing state.
- Much thinner and denser homogeneously distributed ′ (Al2Cu) precipitates are found within the grains of the samples under DCT conditions when compared with corresponding CHT conditions. A theoretical model relating the microstructures and yield strength of particle reinforced metal matrix composites is utilized to quantify the strengthening effect from the ′ precipitates, and the quantified results further validate that the strengthening effect in DCT condition mainly comes from the thinner and denser homogeneously distributed ′ precipitates observed in the composites.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zakaria, H.M. Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Eng. J. 2014, 5, 831–838. [Google Scholar] [CrossRef]
- Li, J.; Lü, S.; Wu, S.; Zhao, D.; Li, F.; Guo, W. Effects of nanoparticles on the solution treatment and mechanical properties of nano-SiCp/Al-Cu composites. J. Mater. Process. Technol. 2021, 296, 117195. [Google Scholar] [CrossRef]
- Abarghouie, S.; Reihani, S. Aging behavior of a 2024 Al alloy-SiCp composite. Mater.Des. 2010, 31, 2368–2374. [Google Scholar] [CrossRef]
- Gao, W.; Wang, X.; Chen, J.; Ban, C.; Lu, Z. Influence of Deep Cryogenic treatment on Microstructure and Properties of 7A99 Ultra-High Strength Aluminum Alloy. Metals 2019, 9, 631. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, A. The Portevin–Le Chatelier effect: A review of experimental findings. Sci. Technol. Adv. Mater. 2011, 12, 063001. [Google Scholar] [CrossRef]
- Serajzadeh, S.; Motlagh, S.R.; Mirbagheri, S.; Akhgar, J.M. Deformation behavior of AA2017–SiCp in warm and hot deformation regions. Mater. Des. 2015, 67, 318–323. [Google Scholar] [CrossRef]
- Markus, H.; Christian, I.; Philipp, F.; Martin, W. On the PLC Effect in a Particle Reinforced AA2017 Alloy. Metals 2018, 8, 88. [Google Scholar]
- Kim, H.J.; Kobayashi, T.; Yoon, H.S.; Yoon, E.P. Micromechanical fracture process of SiC-particle-reinforced aluminum alloy 6061-T6 metal matrix composites. Mater. Sci. Eng. A 1992, 154, 35–41. [Google Scholar] [CrossRef]
- Starink, M.J.; Gregson, P.J. S′ and δ′ phase precipitation in SiCp reinforced Al-1.2wt.%Cu-1wt.%Mg-xLi alloys. Mater. Sci. Eng. A 1996, 211, 54–65. [Google Scholar] [CrossRef]
- Härtel, M.; Wagner, S.; Frint, P.; Wagner, F.X. Effects of particle reinforcement and ECAP on the precipitation kinetics of an Al-Cu alloy. Int. Conf. Nanomater. Sev. Plast. Deform. 2014, 63, 012080. [Google Scholar] [CrossRef] [Green Version]
- Sonar, T.; Lomte, S.; Gogte, C. Cryogenic treatment of metal—A review. Mater. Today Proc. 2018, 5, 25219–25228. [Google Scholar] [CrossRef]
- Jka, B.; Rr, B.; Jkb, C.; Bpb, C. Influence of deep cryogenic treatment on natural and artificial aging of Al-Mg-Si alloy EN AW 6026. J. Alloys Compd. 2021, 899, 163323. [Google Scholar]
- Li, H.; Tong, W.; Cui, J.; Hui, Z.; Chen, L.; Liang, Z. The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel. Mater. Sci. Eng. A 2016, 662, 356–362. [Google Scholar] [CrossRef]
- Li, S.; Deng, L.; Wu, X.; Min, Y.; Wang, H. Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel. Cryogenics 2010, 50, 754–758. [Google Scholar] [CrossRef]
- Mohan, N.; Arul, S. Effect of cryogenic treatment on the mechanical properties of alloy steel 16MnCr5. Mater. Today Proc. 2018, 5, 25265–25275. [Google Scholar] [CrossRef]
- Baldissera, P. Deep cryogenic treatment of AISI 302 stainless steel: Part I—Hardness and tensile properties. Mater. Des. 2010, 31, 4725–4730. [Google Scholar] [CrossRef]
- Baldissera, P.; Delprete, C. Effects of deep cryogenic treatment on static mechanical properties of 18NiCrMo5 carburized steel. Mater. Des. 2009, 30, 1435–1440. [Google Scholar] [CrossRef]
- Luo, X.; Ren, X.; Qu, H.; Hou, H.; Chen, J.; Tian, P. Research on influence of deep cryogenic treatment and ultrasonic rolling on improving surface integrity of Ti6Al4V alloy. Mater. Sci. Eng. A 2022, 843, 143142. [Google Scholar] [CrossRef]
- Lv, J.W.; Wang, F.L.; Yin, D.W.; Zhang, S.; Zhang, X.Y. Effect of deep cryogenic cycling treatment on the microstructure and mechanical properties of Ti-based bulk metallic glass. J. Alloys Compd. 2021, 887, 161386. [Google Scholar] [CrossRef]
- Xu, L.Y.; Zhu, J.; Jing, H.Y.; Zhao, L.; Lv, X.Q.; Han, Y.D. Effects of deep cryogenic treatment on the residual stress and mechanical properties of electron-beam-welded Ti–6Al–4V joints. Mater. Sci. Eng. A 2016, 673, 503–510. [Google Scholar] [CrossRef]
- Ma, S.; Su, R.; Li, G.; Qu, Y.; Li, R. Effect of deep cryogenic treatment on corrosion resistance of AA7075-RRA. J. Phys. Chem. Solids 2022, 167, 110747. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, Q.; Qian, D.; Liu, J.; Sun, J.; Sun, Z. Effect of deep cryogenic treatment on mechanical properties and residual stress of AlSi10Mg alloy fabricated by laser powder bed fusion. J. Mater. Process. Technol. 2022, 303, 117543. [Google Scholar] [CrossRef]
- Qiu, F.; Gao, X.; Tang, J.; Gao, Y.-Y.; Shu, S.-L.; Han, X.; Li, Q.; Jiang, Q.-C. Microstructures and Tensile Properties of Al–Cu Matrix Composites Reinforced with Nano-Sized SiCp Fabricated by Semisolid Stirring Process. Metals 2017, 7, 49. [Google Scholar] [CrossRef]
- Sonia, P.; Verma, V.; Saxena, K.K.; Kishore, N.; Rana, R.S. Effect of cryogenic treatment on mechanical properties and microstructure of aluminum 6082 alloy. Mater. Today Proc. 2020, 26, 2248–2253. [Google Scholar] [CrossRef]
- Araghchia, M.; Mansouria, H.; Vafaeia, R.; Guo, Y. A novel cryogenic treatment for reduction of residual stresses in 2024 aluminum alloy. Mater. Sci. Eng. A 2017, 689, 48–52. [Google Scholar] [CrossRef]
- Xiao, B.L.; Fan, J.Z.; Tian, X.F.; Zhang, W.Y.; Shi, L.K. Hot deformation and processing map of 15%SiCp/2009 Al composite. J. Mater. Sci. 2005, 40, 5757–5762. [Google Scholar] [CrossRef]
- Duan, S.; Guo, F.; Zhang, Y.; Chong, K.; Lee, S.; Matsuda, K.; Zou, Y. Effects of texture and precipitates characteristics on anisotropic hardness evolution during artificial aging for an Al-Cu-Li alloy. Mater. Des. 2021, 212, 110216. [Google Scholar] [CrossRef]
- Ma, G.N.; Wang, D.; Liu, Z.Y.; Xiao, B.L.; Ma, Z.Y. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites. Mater. Charact. 2019, 158, 109966. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z. A New Method to Characterize and Model Stress-Relaxation Aging Behavior of Aluminum Alloys under Age Forming Conditions. Metall. Mater. Trans. A 2022, 53, 1345–1360. [Google Scholar] [CrossRef]
- Tingdong, X.; Buyuan, C. Kinetics of non-equilibrium grain-boundary segregation. Prog. Mater. Sci. 2004, 49, 109–208. [Google Scholar] [CrossRef]
- Liu, C.; Ma, Z.; Ma, P.; Zhan, L.; Huang, M. Multiple precipitation reactions and formation of θ′-phase in a pre-deformed Al-Cu alloy. Mater. Sci. Eng. A 2018, 733, 28–38. [Google Scholar] [CrossRef]
- Zuiko, I.S.; Gazizov, M.R.; Kaibyshev, R.O. Effect of thermomechanical treatment on the microstructure, phase composition, and mechanical properties of Al-Cu-Mn-Mg-Cr alloy. Phys. Met. Metallogr. 2016, 117, 906–919. [Google Scholar] [CrossRef]
- Wang, S.C.; Starink, M.J. Two types of S phase precipitates in Al-Cu-Mg alloys. Acta Mater. 2007, 55, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ju, J.; Zhang, Z.; Zhou, Y.; Wang, J. Precipitation behavior and mechanical properties of Al-Zn-Mg-Cu matrix nanocomposites: Effects of SiC nanoparticles addition and heat treatment. Mater. Charact. 2020, 172, 110827. [Google Scholar] [CrossRef]
- Perez, M.; Dumont, M.; Acevedo-Reyesc, D. Implementation of classical nucleation and growth theories for precipitation. Acta Mater. 2008, 56, 2119–2132. [Google Scholar] [CrossRef]
- Deschamps, A.; Brechet, Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress. Acta Mater. 1998, 47, 293–305. [Google Scholar] [CrossRef]
- Bardel, D.; Perez, M.; Nelias, D.; Deschamps, A.; Hutchinson, C.R.; Maisonnette, D.; Chaise, T.; Garnier, J.; Bourlier, F. Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminum alloy. Acta Mater. 2014, 62, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shi, Z.; Lin, J.; Yang, Y.L.; Rong, Q.; Huang, B.M.; Chung, T.F.; Tsao, C.S.; Yang, J.R.; Balint, D.S. A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy. Int. J. Plast. 2017, 89, 130–149. [Google Scholar] [CrossRef] [Green Version]
- Song, M.I.N.; Li, X.I.A.; Kang, H.C. Modeling the age-hardening behavior of SiC/Al metal matrix composites. Metall. Mater. Trans. A 2007, 38, 638–648. [Google Scholar] [CrossRef]
Cu | Mg | Si | Fe | Zn | O | Impurity | Al |
---|---|---|---|---|---|---|---|
3.44 | 1.38 | 0.29 | 0.06 | 0.05 | 0.15 | 0.15 | Balance |
Group | Material | SHT | DCT | Artificial Ageing (170 °C, TA) | Tests |
---|---|---|---|---|---|
1 | Composites | 510 °C (TS) for 2 h | - | 0–60 h | Hardness |
2 | AA2009 | 510 °C (TS) for 2 h | - | 0–60 h | Hardness |
3 | Composites | 510 °C (TS) for 2 h | - | 0–60 h | Tensile |
4 | Composites | 510 °C (TS) for 2 h | −196 °C (TDCT) for 1 h | 0–60 h | Tensile |
Heat Treatment | Ageing Time | Length/nm | Width/nm | Density/1015m−2 |
---|---|---|---|---|
CHT | 4 | 44.3 ± 12.2 | 3.4 ± 1.0 | 0.3 |
CHT | 20 | 49.0 ± 22.9 | 3.6 ± 1.4 | 1.2 |
DCT | 20 | 52.1 ± 29.3 | 3.1 ± 1.9 | 1.8 |
Parameter | Value |
---|---|
10 MPa | |
M | 2 |
b | 0.286 nm |
k | 0.11 (calibrated) |
27 GPa | |
K | 840 MPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Chen, J.; Liu, B.; Pan, R.; Gao, Y.; Li, Y. Effect of Deep Cryogenic Treatment on the Artificial Ageing Behavior of SiCp–AA2009 Composite. Metals 2022, 12, 1767. https://doi.org/10.3390/met12101767
Wang Z, Chen J, Liu B, Pan R, Gao Y, Li Y. Effect of Deep Cryogenic Treatment on the Artificial Ageing Behavior of SiCp–AA2009 Composite. Metals. 2022; 12(10):1767. https://doi.org/10.3390/met12101767
Chicago/Turabian StyleWang, Zhenxiao, Jie Chen, Baosheng Liu, Ran Pan, Yuan Gao, and Yong Li. 2022. "Effect of Deep Cryogenic Treatment on the Artificial Ageing Behavior of SiCp–AA2009 Composite" Metals 12, no. 10: 1767. https://doi.org/10.3390/met12101767
APA StyleWang, Z., Chen, J., Liu, B., Pan, R., Gao, Y., & Li, Y. (2022). Effect of Deep Cryogenic Treatment on the Artificial Ageing Behavior of SiCp–AA2009 Composite. Metals, 12(10), 1767. https://doi.org/10.3390/met12101767