An Anisotropic Damage Model for Prediction of Ductile Fracture during Cold-Forging
Abstract
:1. Introduction
2. Ductile-Fracture Prediction Model with Anisotropic Damage
2.1. Anisotropic Damage Model
2.2. Damage Equation Considering Compressive Stress
3. Verification of the Anisotropic Damage Model by Uniaxial Tensile Test
3.1. Experimental Condition
3.2. Experimental Result
4. Application of Anisotropic Damage Model for Prediction of Ductile Fracture in Hollow Shaft Parts
4.1. Forging Process of Hollow Shaft Parts
4.2. Application of Isotropic Ductile Damage Model
4.3. Application of Anisotropic Damage Model
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Benzerga, A.A.; Besson, J.; Pineau, A. Anisotropic ductile fracture Part I: Experiments. Acta Mater. 2004, 52, 4623–4638. [Google Scholar] [CrossRef]
- Besson, J. Continuum Models of Ductile Fracture: A Review. Int. J. Damage Mech. 2010, 19, 3–52. [Google Scholar] [CrossRef] [Green Version]
- Tekkaya, A.E.; Bouchard, P.-O.; Bruschi, S.; Tasan, C.C. Damage in metal forming. CIRP Ann.—Manuf. Technol. 2020, 69, 600–623. [Google Scholar] [CrossRef]
- Cockcroft, M.G.; Latham, D.J. Ductility and workability of metals. J. Inst. Met. 1968, 96, 33–39. [Google Scholar]
- Stebunov, S.; Vlasov, A.; Biba, N. Prediction of fracture in cold forging with modified Cockcroft-Latham criterion. Procedia Manuf. 2018, 15, 519–526. [Google Scholar] [CrossRef]
- Oyane, M.; Sato, T.; Okimoto, K.; Shima, S. Criteria for ductile fracture and their applications. J. Mech. Work. Technol. 1980, 4, 65–81. [Google Scholar] [CrossRef]
- McClintock, F.A.; Kaplan, S.M.; Berg, C.A. Ductile fracture by hole growth in shear bands. Int. J. Fract. Mech. 1966, 2, 614–627. [Google Scholar] [CrossRef]
- McClintock, F.A. A criterion for ductile fracture by the growth of holes. J. Appl. Mech. 1968, 35, 363–371. [Google Scholar] [CrossRef]
- Rice, J.R.; Tracey, D.M. On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 1969, 17, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.A.; Celentano, D.J.; Cruchaga, M.A. Assessment of ductile failure models in single-pass wire drawing processes. Int. J. Damage Mech. 2017, 27, 1291–1306. [Google Scholar] [CrossRef]
- Ran, J.Q.; Fu, M.W. Applicability of the uncoupled ductile fracture criteria in micro-scaled plastic deformation. Int. J. Damage Mech. 2016, 25, 289–314. [Google Scholar] [CrossRef]
- Bao, Y.; Wierzbicki, T. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 2004, 46, 81–98. [Google Scholar] [CrossRef]
- Bai, Y.; Wierzbicki, T. Application of extended Mohr–Coulomb criterion to ductile fracture. Int. J. Fract. 2010, 161, 1. [Google Scholar] [CrossRef]
- Bai, Y.; Wierzbicki, T. A comparative study of three groups of ductile fracture loci in the 3D space. Eng. Fract. Mech. 2015, 135, 147–167. [Google Scholar] [CrossRef]
- Fincato, R.; Tsutsumi, S. Numerical modeling of the evolution of ductile damage under proportional and non-proportional loading. Int. J. Solids Struct. 2019, 160, 247–264. [Google Scholar] [CrossRef]
- Murakami, S. Continuum Damage Mechanics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 111–138. [Google Scholar]
- Hering, O.; Dahnke, C.; Tekkaya, A.E. Influence of Damage on the Properties of Cold Forged Parts. In Proceedings of the 51st ICFG Plenary Meeting (ICFG 2018), Ohio, OH, USA, 21–24 October 2018; pp. 137–144. [Google Scholar]
Material | C | Si | Mn | P | S | Cr | Fe |
---|---|---|---|---|---|---|---|
SCr420H | 0.20 | 0.25 | 0.73 | 0.03 | 0.03 | 1.05 | Bal. |
No. | Spheroidizing Annealing | Specimen Type | Reduction in Prior Compression | Specimen Length a/mm | Specimen Length b/mm | Radius of Notch c/mm |
---|---|---|---|---|---|---|
1 2 3 4 5 6 7 | Specimen A (730 °C, 10 h, furnace cooling) | Smooth Notched | - 25% 33% - 25% 33% - | 120 90 80 - - - - | - - - 100 90 80 100 | - - - R3 R3 R3 R1 |
8 9 | Specimen B (690 °C, 10 h, furnace cooling) | Smooth Notched | - - | 120 - | - 100 | - R3 |
Spheroidizing Annealing | Plasticity Coefficient F/MPa | Work Hardening Exponent n | Material Constant ε0 |
---|---|---|---|
Specimen A Specimen B | 730 889 | 0.14 0.17 | 0.001 0.003 |
σ = F(ε + ε0)n |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, A.; Hayakawa, K.; Fujikawa, S. An Anisotropic Damage Model for Prediction of Ductile Fracture during Cold-Forging. Metals 2022, 12, 1823. https://doi.org/10.3390/met12111823
Watanabe A, Hayakawa K, Fujikawa S. An Anisotropic Damage Model for Prediction of Ductile Fracture during Cold-Forging. Metals. 2022; 12(11):1823. https://doi.org/10.3390/met12111823
Chicago/Turabian StyleWatanabe, Atsuo, Kunio Hayakawa, and Shinichiro Fujikawa. 2022. "An Anisotropic Damage Model for Prediction of Ductile Fracture during Cold-Forging" Metals 12, no. 11: 1823. https://doi.org/10.3390/met12111823
APA StyleWatanabe, A., Hayakawa, K., & Fujikawa, S. (2022). An Anisotropic Damage Model for Prediction of Ductile Fracture during Cold-Forging. Metals, 12(11), 1823. https://doi.org/10.3390/met12111823