The Role of Mycorrhizal-Assisted Phytomining in the Recovery of Raw Materials from Mine Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Mycorrhizal-Assisted Phytomining (MAP) System
2.3. Bioreactors at TRL 4
2.4. Hydraulic Calibration
2.5. Experimental Design and Measurement of Parameters
2.6. TXRF Analysis
2.7. Bioextracting Potential (BP) in VDM
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ubaldini, S.; Guglietta, D.; Vegliò, F.; Giuliano, V. Valorization of Mining Waste by Application of Innovative Thiosulphate Leaching for Gold Recovery. Metals 2019, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Guglietta, D.; Belardi, G.; Cappai, G.; Casentini, B.; Godeas, A.; Milia, S.; Passeri, D.; Salvatori, R.; Scotti, A.; Silvani, V.; et al. Toward a Multidisciplinary Strategy for the Classification and Reuse of Iron and Manganese Mining Wastes. Chem. J. Mold. 2020, 15, 21–30. [Google Scholar] [CrossRef]
- European Commission, COM 2020/474 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0474 (accessed on 16 September 2022).
- Peuke, A.D.; Rennenberg, H. Phytoremediation. Molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO J. 2005, 6, 497–501. [Google Scholar] [CrossRef]
- Scotti, A.; Milia, S.; Silvani, V.; Cappai, G.; Guglietta, D.; Trapasso, F.; Tempesta, E.; Passeri, D.; Godeas, A.; Gómez, M.; et al. Sustainable Recovery of Secondary and Critical Raw Materials from Classified Mining Residues Using Mycorrhizal-Assisted Phytoextraction. Metals 2021, 11, 1163. [Google Scholar] [CrossRef]
- Dinh, T.; Dobo, Z.; Kovacs, H. Phytomining of noble metals—A review. Chemosphere 2022, 286, 131805. [Google Scholar] [CrossRef]
- Ubaldini, S.; Guglietta, D.; Trapasso, F.; Carloni, S.; Passeri, D.; Scotti, A. Treatment of Secondary Raw Materials by Innovative Processes. Chem. J. Mold. 2019, 14, 32–46. [Google Scholar] [CrossRef]
- Scotti, A.; Silvani, V.; Cerioni, J.; Visciglia, M.; Benavidez, M.; Godeas, A.A. Pilot testing of a bioremediation system of water and soils contaminated with heavy metals: Vegetable Depuration Module. Int. J. Phytoremediation 2019, 21, 899–907. [Google Scholar] [CrossRef]
- Colombo, R.P.; Benavidez, M.E.; Fernandez Bidondo, L.; Silvani, V.; Bompadre, M.J.; Statello, M.; Scorza, M.V.; Scotti, A.; Godeas, A.M. Arbuscular mycorrhizal fungi in heavy metal highly polluted soil in the Riachuelo river basin. Rev. Arg. Microbiol. 2019, 52, 145–149. [Google Scholar] [CrossRef]
- Bompadre, M.J.; Benavidez, M.; Colombo, R.P.; Silvani, V.A.; Godeas, A.M.; Scotti, A.; Pardo, A.G.; Fernandez Bidondo, L. Mycorrhizal stress alleviation in Senecio bonariensis Hook & Arn growing in urban polluted soils. J. Environ. Qual. 2021, 50, 589–597. [Google Scholar]
- Scotti, A.; Godeas, A.; Silvani, V. Procedimiento para Aumentar la Capacidad Biorremediadora de Plantas Hiperacumuladoras a Través de Hongos Formadores de Micorrizas Arbusculares (HMA) para Tratamiento de Suelos y/o Aguas Contaminados. Patent AR090183 B1130100620, 2022. [Google Scholar]
- Scotti, A.; Silvani, V.; Milia, S.; Cappai, G.; Ubaldini, S.; Ortega, V.; Colombo, R.; Godeas, A.; Gómez, M. Scale-up of Mycorrhizal-Assisted Phytoremediation system from Technology Readiness Level 6 (Relevant Environment) to 7 (Operational Environment): Cost-benefits within a Circular Economy Context. In Soil Science—Emerging Technologies, Global Perspectives and Applications; Aide, M.T., Braden, I., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Scotti, A.; Cerioni, J.; Reviglio, H.; Visciglia, M.; Cerioni, S.; Biondi, R.; Saavedra, V.; Litter, M.; Silvani, V.; Godeas, A.; et al. Scaling to technological readiness levels 6 in the bio-environmental laboratory. Robot. Autom. Eng. J. 2019, 4, 5555637. [Google Scholar]
- Brodtkorb, M.K.; Ametrano, S. Estudio mineralógico de la mina “Los Cóndores”, provincia de San Luis. In Proceedings of the 8° Congreso Geológico Argentino 3, San Luis, Argentina, 20–26 September 1981; pp. 259–302. [Google Scholar]
- Romano, E.; Saavedra, V. UNSL Mineralogical Report for WP1 Technical Report; Bucharest, Romania, May 2018. Available online: https://www.uc.pt/en/org/biocriticalmetals# (accessed on 16 September 2022).
- Silvani, V.A.; Fernández Bidondo, L.; Bompadre, M.J.; Pérgola, M.; Bompadre, A.; Fracchia, S.; Godeas, A.M. Growth dynamics of geographically different arbuscular mycorrhizal fungal isolates belonging to the ‘Rhizophagus clade’ under monoxenic conditions. Mycologia 2014, 106, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–160. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, M. An evaluation of techniques for measuring vesicular arbuscular infection in roots. New Phytol. 1980, 84, 589–600. [Google Scholar] [CrossRef]
- Ferrol, N.; Tamayo, E.; Vargas, P. The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. J. Exp. Bot. 2016, 67, 6253–6265. [Google Scholar] [CrossRef] [Green Version]
- Luthfiana, N.; Inamura, N.; Tantriani; Sato, T.; Saito, K.; Oikawa, A.; Chen, W.; Tawaraya, K. Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Mycorrhiza 2021, 31, 403–412. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Ker, K.; Charest, C. Nickel remediation by AM colonized sunflower. Mycorrhiza 2010, 20, 399–406. [Google Scholar] [CrossRef]
- Burger, A.; Lichtscheidl, I. Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Sci. Total Environ. 2019, 653, 1458–1512. [Google Scholar] [CrossRef] [PubMed]
- Hanaka, A.; Dresler, S.; Wójciak-Kosior, M.; Strzemski, M.; Kováˇcik, J.; Latalski, M.; Zawi’slak, G.; Sowa, I. The Impact of Longand Short-Term Strontium Treatment on Metabolites and Minerals in Glycine max. Molecules 2019, 24, 3825. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, C.V.; Casper, B.B. Lateral root function and root overlap among mycorrhizal and non mycorrhizal herbs in Florida shrubland, measured using rubidium as a nutrient analog. Am. J. Bot. 2002, 89, 1289–1294. [Google Scholar] [CrossRef]
- Watts-Williams, S.J.; Smith, F.A.; McLaughlin, M.J.; Patti, A.F.; Cavagnaro, T.R. How important is the mycorrhizal pathway for plant Zn uptake? Plant Soil 2015, 390, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Watts-Williams, S.J.; Patti, A.F.; Cavagnaro, T.R. Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant Soil 2013, 371, 299–312. [Google Scholar] [CrossRef]
- De Maria, S.; Rivelli, A.R. Trace element accumulation and distribution in sunflower plants at the stages of flower bud and maturity. Ital. J. Agron. 2013, 8, e9. [Google Scholar] [CrossRef]
- Ubaldini, S.; Povar, I.; Lupascu, T.; Spinu, O.; Trapasso, F.; Passeri, D.; Carloni, S.; Guglietta, D. Application of Innovative Processes for Gold Recovery from Romanian Mining Wastes. Chem. J. Mold. 2020, 15, 29–37. [Google Scholar] [CrossRef]
Biomass (g) | |||
---|---|---|---|
Soil Substrate | Plant Tissue | M+ | M− |
CS | F | 0.43 (0.02) | 0.40 (0.03) |
L | 0.29 (0.03) | 0.20 (0.02) | |
R | 0.02 (0.01) | 0.010 (0.006) | |
B | F | 0.39 (0.03) | 0.41 (0.03) |
L | 0.31 (0.03) | 0.30 (0.02) | |
R | 0.16 (0.01) | 0.17 (0.01) |
Chemical Elements | Plant Tissues and Soil | B | CSM− | CSM+ |
---|---|---|---|---|
Zn | Flowers | 46 (4.24) a | 756 (76) b | 600 (60) b |
Leaves | 41 (0) a | 1200 (100) b | 930 (93) b | |
Roots | 38.5 (12.0) a | 1200 (100) b | 1100 (100) b | |
Substrate | 137.5 (2.1) a | 6000 (90) b | 5900 (90) b | |
Cr | Flowers | 3.15 (0.64) a | 3.50 (0.70) a | 4.02 (0.80) a |
Leaves | 5.4 (0.6) a | 4.7 (0.70) a | 7.4 (0.7) a | |
Roots | 17.9 (14.2) a | 29 (3) a | 13 (1) a | |
Substrate | 64 (1) a | 83 (8) a | 95 (19) a | |
P | Flowers | 3250 (353) a | 1700 (200) b | 1500 (200) b |
Leaves | 2050 (353) a | 615 (61) b | 1500 (200) a | |
Roots | 1250 (212) a | 584 (58) b | 543 (54) b | |
Substrate | 3350 (70) a | 2200 (300) b | 2200 (300) b | |
Ni | Flowers | 0.5 (0) a | 0.7 (0.1) a | 0.5 (0.1) a |
Leaves | 0.5 (0) a | 0.80 (0.02) b | 1.4 (0.02) c | |
Roots | 1.75 (0.92) a | 2.2 (0.3) a | 5.2 (0.5) b | |
Substrate | 30.5 (0.7) a | 33 (3) a | 31 (6)a | |
Cu | Flowers | 5 (0.7) a | 15 (1) b | 15 (1) b |
Leaves | 8.4 (0.6) a | 19 (2) b | 25 (3) b | |
Roots | 11.25 (3.61) a | 244 (24) b | 254 (25) b | |
Substrate | 51.00 (1.41) a | 4500 (700) b | 4600 (700) b | |
Mn | Flowers | 19.5 (3.5) a | 118 (12) b | 120 (12) b |
Leaves | 32.5 (0.7) a | 241 (24) b | 338 (34) b | |
Roots | 51.5 (19.1) a | 60 (6) a | 84 (8) a | |
Substrate | 690 (19) a | 1000 (200) a | 1000 (200) a | |
Rb | Flowers | 12.5 (0.7) a | 15 (2) a | 16 (2) a |
Leaves | 10.7 (1.8) a | 16 (2) a | 16 (2) a | |
Roots | 21 (3) a | 12 (1) b | 14 (1) ab | |
Substrate | 82 (58) a | 283 (28) b | 280 (56) b | |
Sr | Flowers | 95.5 (7.8) a | 98 (10) a | 97 (10) a |
Leaves | 156.5 (6.4) a | 220 (22) a | 208 (21) a | |
Roots | 123.5 (13.4) a | 93 (9) a | 103 (10) a | |
Substrate | 138.5 (31.8) a | 181 (18) a | 177 (35) a |
Elements | Treatment | BC Flower | BC Leaves | BC Roots | TF Leaves/Roots | Effect M+ | TF Flower/Leaves | Effect M+ |
---|---|---|---|---|---|---|---|---|
Cr | CSM+ | 0.04 (0.02) | 0.08 (0.02) | 0.14 (0.04) | 0.57 | (+) | 0.50 | (−) |
CSM− | 0.04 (0.01) | 0.06 (0.01) | 0.35 (0.07) | 0.16 | 0.67 | |||
B | 0.05 (0.01) | 0.09 (0.01) | 0.28 (0.23) | 0.30 | 0.57 | |||
Zn | CSM+ | 0.10 (0.01) | 0.16 (0.02) | 0.19 (0.02) | 0.84 | (−) | 0.63 | (−) |
CSM− | 0.13 (0.02) | 0.20 (0.02) | 0.20 (0.02) | 1.00 | 0.65 | |||
B | 0.33 (0.04) | 0.30 (0.01) | 0.28 (0.10) | 1.06 | 1.10 | |||
P | CSM+ | 0.68 (0.18) | 0.68 (0.18) | 0.25 (0.06) | 2.76 | (+) | 1.00 | (−) |
CSM− | 0.77 (0.20) | 0.28 (0.07) | 0.26 (0.06) | 1.05 | 2.75 | |||
B | 0.97 (0.13) | 0.61 (0.12) | 0.37 (0.07) | 1.64 | 1.59 | |||
Cu | CSM+ | 0.003 (0.0007) | 0.005 (0.001) | 0.06 (0.01) | 0.10 | (+) | 0.60 | (−) |
CSM− | 0.003 (0.0007) | 0.004 (0.001) | 0.05 (0.01) | 0.08 | 0.75 | |||
B | 0.10 (0.02) | 0.16 (0.02) | 0.22 (0.08) | 0.75 | 0.63 | |||
Mn | CSM+ | 0.12 (0.04) | 0.34 (0.10) | 0.08 (0.02) | 4.02 | (=) | 0.35 | (−) |
CSM− | 0.12 (0.04) | 0.24 (0.07) | 0.06 (0.02) | 4.02 | 0.50 | |||
B | 0.03 (0.006) | 0.05 (0.002) | 0.07 (0.03) | 0.63 | 0.60 | |||
Rb | CSM+ | 0.06 (0.02) | 0.06 (0.02) | 0.05 (0.01) | 1.14 | (−) | 1.00 | (+) |
CSM− | 0.05 (0.01) | 0.06 (0.01) | 0.04 (0.01) | 1.33 | 0.83 | |||
B | 0.15 (0.12) | 0.13 (0.11) | 0.26 (0.22) | 0.51 | 1.15 | |||
Sr | CSM+ | 0.55 (0.16) | 1.17 (0.35) | 0.58 (0.17) | 2.02 | (−) | 0.47 | (−) |
CSM− | 0.54 (0.11) | 1.21 (0.24) | 0.51 (0.10) | 2.37 | 0.45 | |||
B | 0.69 (0.21) | 1.13 (0.30) | 0.89 (0.30) | 1.26 | 0.61 | |||
Ni | CSM+ | 0.016 (0.006) | 0.045 (0.01) | 0.17 (0.05) | 0.27 | (−) | 0.36 | (−) |
CSM− | 0.021 (0.005) | 0.024 (0.003) | 0.07 (0.02) | 0.36 | 0.88 | |||
B | 0.016 (0.0004) | 0.016 (0.0004) | 0.06 (0.03) | 0.29 | 1.00 |
Parameter | Zn (ppm) | Cr (ppm) | P (ppm) | Ni (ppm) | Cu (ppm) | Mn (ppm) | Rb (ppm) | Sr (ppm) |
---|---|---|---|---|---|---|---|---|
CpF × WtF | 74,820 (10,962) | 501 (123) | 187,050 (33,640) | 62.3 (15.4) | 1870 (211) | 14,964 (2192) | 1995 (342) | 12,096 (1810) |
CpR × WtR | 6380 (3770) | 75 (43) | 3149 (1888) | 30 (18) | 1473 (882) | 487 (290) | 81 (46) | 597 (357) |
CpL × WtL | 78,213 (15,912) | 622 (123) | 126,150 (29,870) | 118 (14) | 2102 (470) | 28,425 (5800) | 1346 (307) | 17,492 (3576) |
BP (mg) | 159 (30) | 1.2 (0.3) | 316 (65) | 0.21 (0.05) | 5.4 (1.6) | 43.9 (8.3) | 3.4 (0.7) | 30.2 (11.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scotti, A.; Silvani, V.A.; Juarez, N.A.; Godeas, A.M.; Ubaldini, S. The Role of Mycorrhizal-Assisted Phytomining in the Recovery of Raw Materials from Mine Wastes. Metals 2022, 12, 1828. https://doi.org/10.3390/met12111828
Scotti A, Silvani VA, Juarez NA, Godeas AM, Ubaldini S. The Role of Mycorrhizal-Assisted Phytomining in the Recovery of Raw Materials from Mine Wastes. Metals. 2022; 12(11):1828. https://doi.org/10.3390/met12111828
Chicago/Turabian StyleScotti, Adalgisa, Vanesa Analía Silvani, Natalia Andrea Juarez, Alicia Margarita Godeas, and Stefano Ubaldini. 2022. "The Role of Mycorrhizal-Assisted Phytomining in the Recovery of Raw Materials from Mine Wastes" Metals 12, no. 11: 1828. https://doi.org/10.3390/met12111828
APA StyleScotti, A., Silvani, V. A., Juarez, N. A., Godeas, A. M., & Ubaldini, S. (2022). The Role of Mycorrhizal-Assisted Phytomining in the Recovery of Raw Materials from Mine Wastes. Metals, 12(11), 1828. https://doi.org/10.3390/met12111828