Effect of Ca Deoxidation on Toughening of Heat-Affected Zone in High-Strength Low-Alloy Steels after Large-Heat-Input Welding
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Impact Toughness
3.2. HAZ Microstructure
3.3. Fracture Surface
3.4. Secondary Cracks
4. Discussion
5. Conclusions
- The average impact toughness of CGHAZs increases with an increase in Ca content, and the HAZ toughness of the 25Ca steel is satisfactorily high, primarily owing to the uniform and fine prior austenite grains.
- The prior austenite grains in the CGHAZs of the 11Ca and 18Ca steels with relatively low Ca contents are not uniform, leading to large test variabilities in HAZ toughness at −20 °C.
- The major and secondary cracks in the impact tests preferentially propagate along the brittle GBF, but the cracks alter to grow along the strong IAF as the grain size decreases, resulting in improved HAZ toughness.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wan, X.L.; Li, G.Q.; Wang, Y.; Zheng, W.; Hou, Y.H. Grain refinement in coarse-grained heat-affected zone of Al–Ti–Mg complex deoxidised steel. Sci. Technol. Weld. Join. 2019, 24, 43–51. [Google Scholar] [CrossRef]
- Pan, X.Q.; Yang, J.; Zhang, Y.H.; Xu, L.Y.; Li, R.B. Effects of Al addition on austenite grain growth, submicrometre and nanometre particles in heat-affected zone of steel plates with Mg deoxidation. Ironmak. Steelmak. 2021, 48, 417–427. [Google Scholar] [CrossRef]
- Wang, C.; Hao, J.J.; Kang, J.; Yuan, G.; Misra, R.D.K.; Wang, G.D. Tailoring the microstructure of coarse-grained HAZ in steel for large heat input welding: Effect of Ti–Mg–Ce–V inclusion/precipitation particles. Metall. Mater. Trans. A 2021, 52A, 3191–3197. [Google Scholar] [CrossRef]
- Cao, R.; Li, J.; Liu, D.S.; Ma, J.Y.; Chen, J.H. Micromechanism of decrease of impact toughness in coarse-grain heat-affected zone of HSLA steel with increasing welding heat input. Metall. Mater. Trans. A 2015, 46A, 2999–3014. [Google Scholar] [CrossRef]
- Hou, Y.H.; Zheng, W.; Wu, Z.H.; Li, G.Q.; Moelans, N.; Guo, M.X.; Khan, B.S. Study of Mn absorption by complex oxide inclusions in Al-Ti-Mg killed steels. Acta Mater. 2016, 118, 8–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.B.; Ma, H. Enhancement of heat-affected zone toughness of a low carbon steel by TiN particle. Metall. Mater. Trans. B 2016, 47, 2148–2156. [Google Scholar] [CrossRef]
- Zhan, D.P.; Ma, J.H.; Jiang, Z.H.; He, J.C.; Yu, J. Effect of inclusions containing Ti, Mg on microstructure and performance of HAZ in low carbon steel. J. Iron Steel Res. Int. 2011, 18, 164–167. [Google Scholar]
- Zhu, L.G.; Wang, Y.; Wang, S.M.; Zhang, Q.J.; Zhang, C.J. Research of microalloy elements to induce intragranular acicular ferrite in shipbuilding steel. Ironmak. Steelmak. 2017, 46, 499–507. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Kobayashi, Y.; Yin, F.X.; Kuwabara, M.; Nagai, K. Nucleation of acicular ferrite on sulfide inclusion during rapid solidification of low carbon steel. ISIJ Int. 2007, 47, 1781–1788. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Ichimiya, K.; Akita, T. High tensile strength steel plates with excellent HAZ toughness for shipbuilding. JFE Tech. Rep. 2005, 5, 24–29. [Google Scholar]
- Zhou, Y.T.; Yang, S.F.; Li, J.S.; Liu, W.; Dong, A.P. Effects of heat-treatment temperature on the microstructure and mechanical properties of steel by MgO nanoparticle additions. Materials 2018, 11, 1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, H.N.; Wang, C.; Wang, B.X.; Wang, Z.D.; Li, Y.Q.; Chen, Z.G. Inclusion evolution behavior of Ti-Mg oxide metallurgy steel and its effect on a high heat input welding HAZ. Metals 2018, 8, 534. [Google Scholar] [CrossRef]
- Xu, L.Y.; Yang, J.; Wang, R.Z.; Wang, Y.N.; Wang, W.L. Effect of Mg content on the microstructure and toughness of heat-affected zone of steel plate after high heat input welding. Metall. Mater. Trans. A 2016, 47A, 3354–3364. [Google Scholar] [CrossRef]
- Xu, L.Y.; Yang, J.; Wang, R.Z.; Wang, W.L.; Wang, Y.N. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J. Iron Steel Res. Int. 2018, 25, 433–441. [Google Scholar] [CrossRef]
- Wang, C.; Misra, R.D.K.; Shi, M.H.; Zhang, P.Y.; Wang, Z.D.; Zhu, F.X.; Wang, G.D. Transformation behavior of a Ti–Zr deoxidized steel: Microstructure and toughness of simulated coarse grain heat affected zone. Mater. Sci. Eng. A 2014, 594, 218–228. [Google Scholar] [CrossRef]
- Yu, Y.C.; Li, H.; Wang, S.B. Effect of yttrium on the microstructures and inclusions of EH36 shipbuilding steel. Metall. Res. Technol. 2017, 114, 410. [Google Scholar] [CrossRef]
- Taguchi, K.; Ono-Nakazato, H.; Nakai, D.; Usui, T.; Marukawa, K. Deoxidation and desulfurization equilibria of liquid iron by calcium. ISIJ Int. 2003, 43, 1705–1709. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, S.K.; Ghosh, A. Thermodynamic evaluation of formation of oxide-sulfide duplex inclusions in steel. ISIJ Int. 2008, 48, 1552–1559. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Sato, S.; Ohta, H.; Shiwaku, T. Effects of Ca addition on formation behavior of TiN particles and HAZ toughness in large-heat-input welding. Kobelco Technol. Rev. 2011, 30, 76–79. [Google Scholar]
- Zhang, Y.H.; Yang, J.; Xu, L.Y.; Qiu, Y.L.; Cheng, G.G.; Yao, M.Y.; Dong, J.X. The effect of Ca content on the formation behavior of inclusions in the heat affected zone of thick high-strength low-alloy steel plates after large heat input weldings. Metals 2019, 9, 1328. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Yang, J.; Liu, D.K.; Pan, X.Q.; Xu, L.Y. Improvement of impact toughness of the welding heat-affected zone in high-strength low-alloy steels through Ca deoxidation. Metall. Mater. Trans. A 2021, 52A, 668–679. [Google Scholar] [CrossRef]
- Wang, R.Z.; Yang, J.; Xu, L.Y. Improvement of heat-affected zone toughness of steel plates for high heat input welding by inclusion control with Ca deoxidation. Metals 2018, 8, 946. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kasyap, P.; Pandey, C.; Basu, B.; Nath, S.K. Role of heat inputs on microstructure and mechanical properties in coarse-grained heat-affected zone of bainitic steel. CIRP J. Manuf. Sci. Technol. 2021, 35, 724–734. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.; Pandey, C.; Basu, B.; Nath, S.K. Impact of subsequent pass weld thermal cycles on first-pass coarse grain heat-affected zone’s microstructure and mechanical properties of naval bainitic steel. J. Mater. Eng. Perform. 2022, 31, 390–399. [Google Scholar] [CrossRef]
- Fan, H.B.; Shi, G.H.; Peng, T.; Wang, Q.M.; Wang, L.P.; Wang, Q.F.; Zhang, F.C. N-induced microstructure refinement and toughness improvement in the coarse grain heat-affected zone of a low carbon Mo–V–Ti–B steel subjected to a high heat input welding thermal cycle. Mater. Sci. Eng. A 2021, 824, 141799. [Google Scholar] [CrossRef]
- Sun, J.C.; Zou, X.D.; Matsuura, H.; Wang, C. Effect of heat input on inclusion evolution behavior in heat-affected zone of EH36 shipbuilding steel. JOM 2018, 70, 946–950. [Google Scholar] [CrossRef]
- Minagawa, M.; Ishida, K.; Funatsu, Y.; Imai, S. 390 MPa yield strength steel plate for large heat-input welding for large container ships. Nippon Steel Tech. Rep. 2004, 90, 7–10. [Google Scholar]
- Hutchinson, B.; Komenda, J.; Rohrer, G.S.; Beladi, H. Heat affected zone microstructures and their influence on toughness in two microalloyed HSLA steels. Acta Mater. 2015, 97, 380–391. [Google Scholar] [CrossRef]
- Pan, X.Q.; Yang, J.; Zhang, Y.H. Microstructure and fracture characteristics of heat-affected zone in shipbuilding steel plates with Mg deoxidation after high heat input welding. Steel Res. Int. 2021, 92, 2100376. [Google Scholar] [CrossRef]
Steels | C | Si | Mn | P | S | Al | N | Ti | O | Ca |
---|---|---|---|---|---|---|---|---|---|---|
2Ca | 0.08 | 0.2 | 1.5 | 0.006 | 0.004 | 0.001 | 0.0034 | 0.0093 | 0.0018 | 0.0002 |
11Ca | 0.08 | 0.2 | 1.5 | 0.009 | 0.007 | 0.004 | 0.0048 | 0.013 | 0.0019 | 0.0011 |
18Ca | 0.08 | 0.2 | 1.5 | 0.007 | 0.004 | 0.006 | 0.0044 | 0.0096 | 0.0012 | 0.0018 |
25Ca | 0.08 | 0.2 | 1.5 | 0.007 | 0.005 | 0.007 | 0.0037 | 0.011 | 0.0019 | 0.0025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, J.; Du, H.; Zhang, Y.; Ma, H. Effect of Ca Deoxidation on Toughening of Heat-Affected Zone in High-Strength Low-Alloy Steels after Large-Heat-Input Welding. Metals 2022, 12, 1830. https://doi.org/10.3390/met12111830
Zhang Y, Yang J, Du H, Zhang Y, Ma H. Effect of Ca Deoxidation on Toughening of Heat-Affected Zone in High-Strength Low-Alloy Steels after Large-Heat-Input Welding. Metals. 2022; 12(11):1830. https://doi.org/10.3390/met12111830
Chicago/Turabian StyleZhang, Yinhui, Jian Yang, Hailong Du, Yu Zhang, and Han Ma. 2022. "Effect of Ca Deoxidation on Toughening of Heat-Affected Zone in High-Strength Low-Alloy Steels after Large-Heat-Input Welding" Metals 12, no. 11: 1830. https://doi.org/10.3390/met12111830
APA StyleZhang, Y., Yang, J., Du, H., Zhang, Y., & Ma, H. (2022). Effect of Ca Deoxidation on Toughening of Heat-Affected Zone in High-Strength Low-Alloy Steels after Large-Heat-Input Welding. Metals, 12(11), 1830. https://doi.org/10.3390/met12111830