Characterization of the Fatigue Behaviour of Low Carbon Steels by Means of Temperature and Micromagnetic Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Machining of Specimens
2.2. Test Setup
3. Results and Discussion
3.1. Load Increase Tests
3.2. Constant Amplitude Tests
4. Discussion
5. Conclusions
- In contrast to conventional fatigue tests, an improved test strategy combining pre-programmed load-free sequences with adequate duration can improve the reliability of the acquired magnetic Barkhausen noise signals, so that the calculated feature Imax is purely correlated to the accumulated microstructural interaction.
- The inserted load-free sequences have led to noticeable changes in the ΔT-N courses in comparison to the results of continuously conducted tests, but still in a reasonable range, thus that the results obtained by this measuring technique are seen as reliable references for MBN results.
- The variable ΔT, determined thermometrically by an IR camera, responds to the fatigue load in good accordance with the conventional cyclic deformation curves characterized by plastic strain amplitude εa,p.
- The measuring principle and the material responses recorded by means of micromagnetics are different from those of temperature and mechanical stress-strain measurements. The variable Imax, which is determined by complicated processing methods of the measured MBN signals, demonstrates a higher sensitivity to load increase in particular in the earlier stage during LITs before the first significant material response. A good incremental linear correlation between Imax and the load cycle (i.e., the stress amplitude) in the purely elastic phase can be confirmed with R2 ≥ 0.90 for both investigated materials.
- Imax could describe the cyclic deformation behaviour of CATs satisfyingly by a modified four-parameter Langevin function, especially until the end of the first cyclic softening, which means up to approx. 25% of the fatigue life. This can be attributed to the surface-near way of data acquisition which makes the extracted information strongly affected by fatigue-induced changes and relaxation of residual stresses.
- Imax has its limitation in interpreting cyclic hardening behaviour.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basquin, O.H. The Exponential Law on Endurance Tests. ASTM Proc. 1910, 10, 625–630. [Google Scholar]
- Coffin, L.F. A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal. J. Fluids Eng. 1954, 76, 931–949. [Google Scholar] [CrossRef]
- Manson, S.S. Behavior of Materials under Conditions of Thermal Stress; Lewis Flight Propulsion Laboratory: Cleveland, OH, USA, 1953. [Google Scholar]
- Starke, P.; Walther, F.; Eifler, D. Model-Based Correlation between Change of Electrical Resistance and Change of Dislocation Density of Fatigued-Loaded ICE R7 Wheel Steel Specimens. Mater. Test. 2018, 60, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Bill, T.; Teng, Z.J.; Pramanik, S.; Hoyer, K.-P.; Schaper, M.; Starke, P. Characterization of the Fatigue Behaviour for SAE 1045 Steel without and with Load-Free Sequences Based on Non-Destructive, X-ray Diffraction and Transmission Electron Microscopic Investigations. Mater. Sci. Eng. A 2020, 794, 139597. [Google Scholar] [CrossRef]
- Klein, M.; Starke, P.; Nowak, D.; Boller, C.; Walther, F. Separation of Surface, Subsurface and Volume Fatigue Damage Effects in AISI 348 Steel for Power Plant Applications. Mater. Test. 2016, 58, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Heckmann, K.; Sievers, J.; Schopf, T.; Lücker, L.; Schmiedt-Kalenborn, A.; Walther, F.; Starke, P.; Acosta, R.; Boller, C. Correlation of Load Drop and Crack Initiation Criteria in Fatigue Life Experiments of Metallic Materials. Eng. Fract. Mech. 2021, 251, 107785. [Google Scholar] [CrossRef]
- Stromeyer, C.E. The Determination of Fatigue Limits under Alternating Stress Conditions. Proc. R. Soc. London. Ser. A Contain. Pap. A Math. Phys. Character 1914, 90, 411–425. [Google Scholar] [CrossRef]
- Moore, H.F.; Kommers, J.B. An Investigation of the Fatigue of Metals. Univ. Illinois Bull. 1921, 19, 1–186. [Google Scholar]
- Morrow, J. Cyclic Plastic Strain Energy and Fatigue of Metals. In A Symposium Presented at the Sixty-Seventh Annual Meeting American Society for Testing and Materials, STP 378, Proceedings of the Sixty-seventh Annual Meeting American Society for Testing and Materials, Chicago, IL, USA, 21–26 June 1964; Lazan, B., Ed.; ASTM International: West Conshohocken, PA, USA, 1964; pp. 45–87. [Google Scholar]
- Reifsnider, K.L.; Williams, R.S. Determination of Fatigue-Related Heat Emission in Composite Materials. Exp. Mech. 1974, 14, 479–485. [Google Scholar] [CrossRef]
- Aeran, A.; Acosta, R.; Siriwardane, S.C.; Starke, P.; Mikkelsen, O.; Langen, I.; Walther, F. A Nonlinear Fatigue Damage Model: Comparison with Experimental Damage Evolution of S355 (SAE 1020) Structural Steel and Application to Offshore Jacket Structures. Int. J. Fatigue 2020, 135, 105568. [Google Scholar] [CrossRef]
- Starke, P.; Wu, H. Use of Non-Destructive Testing Methods in a New One-Specimen Test Strategy for the Estimation of Fatigue Data. Int. J. Fatigue 2018, 111, 177–185. [Google Scholar] [CrossRef]
- Schelp, M.; Eifler, D. Evaluation of the HCF-Behavior of 42CrMoS4 by Means of Strain, Temperature and Electrical Measurements. Mater. Sci. Eng. A 2001, 319–321, 652–656. [Google Scholar] [CrossRef]
- Fargione, G.; Geraci, A.; la Rosa, G.; Risitano, A. Rapid Determination of the Fatigue Curve by the Thermographic Method. Int. J. Fatigue 2002, 24, 11–19. [Google Scholar] [CrossRef]
- Doudard, C.; Calloch, S.; Hild, F.; Cugy, P.; Galtier, A. Identification of the Scatter in High Cycle Fatigue from Temperature Measurements. Comptes Rendus Mécanique 2004, 332, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Eifler, D.; Piotrowski, A. Bewertung Zyklischer Verformungsvorgänge Metallischer Werkstoffe Mit Hilfe Mechanischer, Thermometrischer Und Elektrischer Meßverfahren Characterization of Cyclic Deformation Behaviour by Mechanical, Thermometrical and Electrical Methods. Mater. Werkst. 1995, 26, 121–127. [Google Scholar] [CrossRef]
- Dengel, D.; Harig, H. Estimation of The Fatigue Limit By Progressively-Increasing Load Tests. Fatigue Fract. Eng. Mater. Struct. 1980, 3, 113–128. [Google Scholar] [CrossRef]
- Teng, Z.; Wu, H.; Boller, C.; Starke, P. A Unified Fatigue Life Calculation Based on Intrinsic Thermal Dissipation and Microplasticity Evolution. Int. J. Fatigue 2020, 131, 105370. [Google Scholar] [CrossRef]
- Teng, Z.; Wu, H.; Boller, C.; Starke, P. Thermodynamic Entropy as a Marker of High-cycle Fatigue Damage Accumulation: Example for Normalized SAE 1045 Steel. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2854–2866. [Google Scholar] [CrossRef]
- Naderi, M.; Khonsari, M.M. An Experimental Approach to Low-Cycle Fatigue Damage Based on Thermodynamic Entropy. Int. J. Solids Struct. 2010, 47, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.Y.; Khonsari, M.M. On the Evaluation of Fracture Fatigue Entropy. Theor. Appl. Fract. Mech. 2018, 96, 351–361. [Google Scholar] [CrossRef]
- Corigliano, P.; Cucinotta, F.; Guglielmino, E.; Risitano, G.; Santonocito, D. Fatigue Assessment of a Marine Structural Steel and Comparison with Thermographic Method and Static Thermographic Method. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 734–743. [Google Scholar] [CrossRef]
- Hayabusa, K.; Inaba, K.; Ikeda, H.; Kishimoto, K. Estimation of Fatigue Limits from Temperature Data Measured by IR Thermography. Exp. Mech. 2017, 57, 185–194. [Google Scholar] [CrossRef]
- De Finis, R.; Palumbo, D.; Galietti, U. Fatigue Damage Analysis of Composite Materials Using Thermography-Based Techniques. Procedia Struct. Integr. 2019, 18, 781–791. [Google Scholar] [CrossRef]
- Tuo, H.; Wu, T.; Lu, Z.; Ma, X. Evaluation of Damage Evolution of Impacted Composite Laminates under Fatigue Loadings by Infrared Thermography and Ultrasonic Methods. Polym. Test. 2021, 93, 106869. [Google Scholar] [CrossRef]
- Altpeter, I.; Becker, R.; Dobmann, G.; Kern, R.; Theiner, W.; Yashan, A. Robust Solutions of Inverse Problems in Electromagnetic Non-Destructive Evaluation. Inverse Probl. 2002, 18, 1907–1921. [Google Scholar] [CrossRef]
- Bjørheim, F.; Siriwardane, S.C.; Pavlou, D. A Review of Fatigue Damage Detection and Measurement Techniques. Int. J. Fatigue 2022, 154, 106556. [Google Scholar] [CrossRef]
- Seeger, A. The Effect of Dislocations on the Magnetization Curves of Ferromagnetic Crystals. J. Phys. Colloq. 1966, 27, 68–77. [Google Scholar] [CrossRef]
- Taylor, R.A.; Jakubovics, J.P.; Astié, B.; Degauque, J. Direct Observation of the Interaction between Magnetic Domain Walls and Dislocations in Iron. J. Magn. Magn. Mater. 1983, 31–34, 970–972. [Google Scholar] [CrossRef]
- Rastogi, P. Effect of Manganese and Sulfur on the Texture and Magnetic Properties of Non-Oriented Steel. IEEE Trans. Magn. 1977, 13, 1448–1450. [Google Scholar] [CrossRef]
- Ranjan, R.; Jiles, D.; Rastogi, P. Magnetic Properties of Decarburized Steels: An Investigation of the Effects of Grain Size and Carbon Content. IEEE Trans. Magn. 1987, 23, 1869–1876. [Google Scholar] [CrossRef]
- Batista, L.; Rabe, U.; Altpeter, I.; Hirsekorn, S.; Dobmann, G. On the Mechanism of Nondestructive Evaluation of Cementite Content in Steels Using a Combination of Magnetic Barkhausen Noise and Magnetic Force Microscopy Techniques. J. Magn. Magn. Mater. 2014, 354, 248–256. [Google Scholar] [CrossRef]
- Pérez-Benítez, J.A.; Espina-Hernández, J.H.; Martínez-Ortiz, P. Unwrapping the Influence of Multiple Parameters on the Magnetic Barkhausen Noise Signal Using Self-Organizing Maps. NDT E Int. 2013, 54, 166–170. [Google Scholar] [CrossRef]
- Sheikh Amiri, M.; Thielen, M.; Rabung, M.; Marx, M.; Szielasko, K.; Boller, C. On the Role of Crystal and Stress Anisotropy in Magnetic Barkhausen Noise. J. Magn. Magn. Mater. 2014, 372, 16–22. [Google Scholar] [CrossRef]
- Kasai, N.; Koshino, H.; Sekine, K.; Kihira, H.; Takahashi, M. Study on the Effect of Elastic Stress and Microstructure of Low Carbon Steels on Barkhausen Noise. J. Nondestr. Eval. 2013, 32, 277–285. [Google Scholar] [CrossRef]
- Pal’a, J.; Stupakov, O.; Bydžovský, J.; Tomáš, I.; Novák, V. Magnetic Behaviour of Low-Carbon Steel in Parallel and Perpendicular Directions to Tensile Deformation. J. Magn. Magn. Mater. 2007, 310, 57–62. [Google Scholar] [CrossRef]
- Karjalainen, L.P.; Moilanen, M. Detection of Plastic Deformation during Fatigue of Mild Steel by the Measurement of Barkhausen Noise. NDT Int. 1979, 12, 51–55. [Google Scholar] [CrossRef]
- Karjalainen, L.; Moilanen, M. Fatigue Softening and Hardening in Mild Steel Detected from Barkhausen Noise. IEEE Trans. Magn. 1980, 16, 514–517. [Google Scholar] [CrossRef]
- Lachmann, C.; Nitschke-Pagel, T.; Wohlfahrt, H. Charakterisierung Des Ermüdungszustandes in Zyklisch Beanspruchten Schweißverbindungen Durch Röntgenographische Und Mikromagnetische Kenngrößen. Mater. Werkst. 1998, 29, 686–693. [Google Scholar] [CrossRef]
- Sagar, S.; Parida, N.; Das, S.; Dobmann, G.; Bhattacharya, D. Magnetic Barkhausen Emission to Evaluate Fatigue Damage in a Low Carbon Structural Steel. Int. J. Fatigue 2005, 27, 317–322. [Google Scholar] [CrossRef]
- Palma, E.S.; Mansur, T.R.; Silva, S.F.; Alvarenga, A. Fatigue Damage Assessment in AISI 8620 Steel Using Barkhausen Noise. Int. J. Fatigue 2005, 27, 659–665. [Google Scholar] [CrossRef]
- Baak, N.; Schaldach, F.; Nickel, J.; Biermann, D.; Walther, F. Barkhausen Noise Assessment of the Surface Conditions Due to Deep Hole Drilling and Their Influence on the Fatigue Behaviour of AISI 4140. Metals 2018, 8, 720. [Google Scholar] [CrossRef] [Green Version]
- Baak, N.; Nickel, J.; Biermann, D.; Walther, F. Barkhausen Noise-Based Fatigue Life Prediction of Deep Drilled AISI 4140. Procedia Struct. Integr. 2019, 18, 274–279. [Google Scholar] [CrossRef]
- Starke, P.; Eifler, D. Fatigue Assessment and Fatigue Life Calculation of Metals on the Basis of Mechanical Hysteresis, Temperature, and Resistance Data. Mater. Test. 2009, 51, 261–268. [Google Scholar] [CrossRef]
- Weber, F.; Acosta, R.; Eyrisch, T.; Hielscher, T.; Magin, M.; Starke, P. Influence of Processing Parameters on the Fatigue Life Time of Specimens Made from Quenched and Tempered Steel SAE 4140H. Mater. Test. 2019, 61, 842–850. [Google Scholar] [CrossRef]
- Starke, P. StressLifetc—NDT-Related Assessment of the Fatigue Life of Metallic Materials. Mater. Test. 2019, 61, 297–303. [Google Scholar] [CrossRef]
- Wu, H.; Bäumchen, A.; Engel, A.; Acosta, R.; Boller, C.; Starke, P. SteBLife—A New Short-Time Procedure for the Evaluation of Fatigue Data. Int. J. Fatigue 2019, 124, 82–88. [Google Scholar] [CrossRef]
Material | C | Si | Mn | P | S | Cr | Mo | Ni | |
---|---|---|---|---|---|---|---|---|---|
SAE 1020 | DIN EN 10083-2 | 0.17–0.24 | ≤0.4 | 0.40–0.70 | ≤0.030 | 0.020–0.040 | ≤0.40 | ≤0.10 | ≤0.40 |
Producer | 0.21 | 0.24 | 0.46 | 0.013 | 0.023 | 0.12 | 0.013 | 0.12 | |
Own analysis (+N) | 0.236 | 0.287 | 0.480 | 0.014 | 0.018 | 0.118 | 0.014 | 0.114 | |
SAE 5120 | DIN EN 10084 | 0.17–0.22 | ≤0.4 | 1.10–1.40 | ≤0.025 | 0.020–0.040 | 1.00–1.30 | - | - |
Producer | 0.18 | 0.24 | 1.23 | 0.015 | 0.026 | 1.05 | 0.022 | 0.10 | |
Own analysis (+N) | 0.195 | 0.273 | 1.314 | 0.016 | 0.024 | 1.060 | 0.024 | 0.093 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Raghuraman, S.R.; Ziman, J.A.; Weber, F.; Hielscher, T.; Starke, P. Characterization of the Fatigue Behaviour of Low Carbon Steels by Means of Temperature and Micromagnetic Measurements. Metals 2022, 12, 1838. https://doi.org/10.3390/met12111838
Wu H, Raghuraman SR, Ziman JA, Weber F, Hielscher T, Starke P. Characterization of the Fatigue Behaviour of Low Carbon Steels by Means of Temperature and Micromagnetic Measurements. Metals. 2022; 12(11):1838. https://doi.org/10.3390/met12111838
Chicago/Turabian StyleWu, Haoran, Srinivasa Raghavan Raghuraman, Jonas Anton Ziman, Fabian Weber, Torsten Hielscher, and Peter Starke. 2022. "Characterization of the Fatigue Behaviour of Low Carbon Steels by Means of Temperature and Micromagnetic Measurements" Metals 12, no. 11: 1838. https://doi.org/10.3390/met12111838
APA StyleWu, H., Raghuraman, S. R., Ziman, J. A., Weber, F., Hielscher, T., & Starke, P. (2022). Characterization of the Fatigue Behaviour of Low Carbon Steels by Means of Temperature and Micromagnetic Measurements. Metals, 12(11), 1838. https://doi.org/10.3390/met12111838