Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Tensile Tests and Results
2.3. Creep Tests and Results
2.4. Fatigue and Creep-Fatigue Tests and Results
3. Constitutive Model and Simulation Results of Experiments
3.1. Simulation Results of Tensile Experiments
3.2. Simulation Results of Creep Tests
3.3. Simulation of Fatigue and Creep-Fatigue Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaboche:, J.L. Viscoplastic constitutive equations for the description of cyclic and anisotropic behavior of metals. Bull. Acad. Polon. Sci. 1977, 25, 33–42. [Google Scholar]
- Armstrong, P.J.; Frederick, C.O. A Mathematical Representation of the Multiaxial Bauschinger Effect; CEGB Report RD/B/N/731; Berkeley Nuclear Laboratories, R&D Department: Berkeley, CA, USA, 1966; Volume 24, pp. 1–26. [Google Scholar]
- Chaboche, J.L.; Nouailhas, D. Constitutive modeling o ratcheting effects-Part I: Experimental facts and properties of the classical models. ASME J. Eng. Mat. Technol. 1989, 111, 384–392. [Google Scholar] [CrossRef]
- Ohno, N. Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity. Appl. Mech. Rev. 1990, 43, 283–295. [Google Scholar] [CrossRef]
- Chaboche, J.L. On some modification of kinematic hardening to improve the description of ratcheting effects. Int. J. Plast. 1991, 7, 661–678. [Google Scholar] [CrossRef]
- Chaboche, J.L.; Jung, O. Application of a kinematic hardening viscoplasticity model with thresholds to the residual stress relaxation. Int. J. Plast. 1998, 13, 785–807. [Google Scholar] [CrossRef]
- Chaboche, J.L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 1989, 5, 247–302. [Google Scholar] [CrossRef]
- Wang, J.D.; Ohno, N. Two Equivalent Forms of Nonlinear Kinematic Hardening: Application to Nonisothermal Plasticity. Int. J. Plast. 1991, 7, 637–650. [Google Scholar] [CrossRef]
- Ohno, N.; Wang, J.D. Transformation of a nonlinear kinematic hardening rule to a multisurface form under isothermal and nonisothermal conditions. Int. J. Plast. 1991, 7, 879–891. [Google Scholar] [CrossRef]
- Abdel-Karim, M.; Ohno, N. Kinematic hardening model suitable for ratcheting with steady-state. Int. J. Plast. 2000, 16, 225–240. [Google Scholar] [CrossRef]
- Ohno, N.; Abdel-Karim, M. Uniaxial ratcheting of 316FR steel at room temperature, part II: Constitutive modeling and simulation. ASME J. Eng. Mat. Tech. 2000, 122, 35–41. [Google Scholar] [CrossRef]
- Brown, S.; Evans, R.W.; Wilshire, B. Creep strain and creep life prediction for the cast nickel-based superalloy IN-100. Mater. Sci. Eng. 1986, 84, 147–156. [Google Scholar] [CrossRef]
- Evans, R.W.; Wilshire, B. Creep of Metals and Alloys; Ztschrift Fur Met; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1985. [Google Scholar]
- Brown, S.; Evans, R.W.; Wilshire, B. A comparison of extrapolation techniques for long term creep strain and creep life prediction based on equations designed to represent creep curve shape. Int. J. Press. Vessel. Pip. 1986, 24, 251–268. [Google Scholar] [CrossRef]
- Rabotnov, Y.N. Some Problems of the Theory of Creep; Vestnik Moskov University: Moscow, Russia, 1948; pp. 81–91. [Google Scholar]
- Othman, A.M.; Hayhurst, D.R.; Dyson, B.F. Skeletal Point Stresses in Circumferentially Notched Tension Bars Undergoing Tertiary Creep Modelled with Physically Based Constitutive Equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 1993, 441, 343–358. [Google Scholar]
- Dyson, B.F.; Hayhurst, D.R.; Lin, J. The Ridged Uniaxial Testpiece: Creep and Fracture Predictions Using Large-Displacement Finite-Element Analyses. Proc. R. Soc. A Math. Phys. Eng. Sci. 1996, 452, 655–676. [Google Scholar]
- Mustata, R.; Hayhurst, D.R. Creep constitutive equations for a 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 565–675 °C. Int. J. Press. Vessel. Pip. 2005, 82, 363–372. [Google Scholar] [CrossRef]
- Xu, Q. Development of constitutive equations for creep damage behavior under multi-axial states of stress. Adv. Mech. Behav. Plast. Damage 2000, 2, 1375–1382. [Google Scholar]
- Batsoulas, N.D. Mathematical description of the mechanical behavior of metallic materials under creep conditions. J. Mater. Sci. 1997, 32, 2511–2527. [Google Scholar] [CrossRef]
- Wilshire, B.; Scharning, P.J.; Hurst, R. A new approach to creep data assessment. Mater. Sci. Eng. 2009, 510, 3–6. [Google Scholar] [CrossRef]
- Whittaker, M.T.; Harrison, W.J.; Lancaster, R.J.; Williams, S. An analysis of modern creep lifing methodologies in the titanium alloy Ti6-4. Mater. Sci. Eng. A 2013, 577, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, Z.; Gray, V.; Whittaker, M.; Perkins, K. A Critical Analysis of the Conventionally Employed Creep Lifing Methods. Materials 2014, 7, 3371–3398. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, M.T.; Harrison, W.J. Evolution of Wilshire equations for creep life prediction. High Temp. Technol. 2014, 31, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Mukai, M.; Takahashi, H.; Ohno, N.; Kawakami, T.; Ishikawa, T. Implicit integration and consistent tangent modulus of a time-dependent non-unified constitutive model. Int. J. Numer. Methods Eng. 2003, 58, 1523–1543. [Google Scholar] [CrossRef]
- Ohguchi, K.I.; Sasaki, K.; Aso, S. Evaluation of Time-Independent and Time-Dependent Strains of Lead-Free Solder by Stepped Ramp Loading Test. ASME J. Electron. Packag. 2009, 131, 021003. [Google Scholar] [CrossRef]
- Panteghini, A.; Genna, F. Effects of the strain-hardening law in the numerical simulation of wire drawing processes. Comput. Mater. Sci. 2010, 49, 236–242. [Google Scholar] [CrossRef]
- Chen, W.; Wang, F.; Feng, M. Study of a modified non-unified model for time-dependent behavior of metal materials. Mech. Mater. 2017, 113, 69–76. [Google Scholar] [CrossRef]
- Gremaud, G. Overview on dislocation-point defect interaction: The brownian picture of dislocation motion. Mater. Sci. Eng. A 2004, 370, 191–198. [Google Scholar] [CrossRef]
- Yilmaz, A. The Portevin—Le Chatelier effect: A review of experimental findings. Sci. Technol. Adv. Mater. 2011, 12, 063001. [Google Scholar] [CrossRef]
- Cui, L.; Yu, J.; Liu, J.; Sun, X. Microstructural evolutions and fracture behaviors of a newly developed nickel-base superalloy during creep deformation. J. Alloys Compd. 2018, 746, 335–349. [Google Scholar] [CrossRef]
Element | Nb + Ta | Mo | Cr | Ni | Ti | Fe | Al | C | Si |
---|---|---|---|---|---|---|---|---|---|
Wt% | 5.04 | 3.12 | 19.70 | 51.70 | 1.01 | — | 0.42 | 0.039 | 0.15 |
c1 | c2 | b1 | C1 | n1 | C2 | n2 | C3 | n3 |
---|---|---|---|---|---|---|---|---|
1.0776 × 10−8 | 5.8129 | 2.8489 | 5.5468 × 10−17 | 3.3655 | 1.2997 × 10−13 | 2.2323 | 2.7304 × 10−21 | 4.7467 |
σy0 | R0 | R∞ | b |
---|---|---|---|
630 | −8 | −195 | 4 |
μ0 | C1 | C2 |
---|---|---|
0.05 | 0.0475 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhuang, S.; Zheng, H.; Zhao, Z.; Jia, X. Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures. Metals 2022, 12, 1868. https://doi.org/10.3390/met12111868
Hu X, Zhuang S, Zheng H, Zhao Z, Jia X. Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures. Metals. 2022; 12(11):1868. https://doi.org/10.3390/met12111868
Chicago/Turabian StyleHu, Xuteng, Shuying Zhuang, Haodong Zheng, Zuopeng Zhao, and Xu Jia. 2022. "Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures" Metals 12, no. 11: 1868. https://doi.org/10.3390/met12111868
APA StyleHu, X., Zhuang, S., Zheng, H., Zhao, Z., & Jia, X. (2022). Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures. Metals, 12(11), 1868. https://doi.org/10.3390/met12111868