Ultrasonic Additive Manufacturing of Metallic Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- White, D.R. Ultrasonic consolidation of aluminum tooling. Adv. Mater. Process. 2003, 161, 64–66. [Google Scholar]
- Dehoff, R.R.; Babu, S.S. Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing. Acta Mater. 2010, 58, 4305–4315. [Google Scholar] [CrossRef]
- Hehr, A.; Norfolk, M. A comprehensive review of ultrasonic additive manufacturing. Rapid Prototyp. J. 2019, 26, 445–458. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Robson, J.D.; Prangnell, P.B. Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4. J. Mater. Process. Technol. 2016, 231, 382–388. [Google Scholar] [CrossRef]
- Hehr, A.; Norfolk, M.; Kominsky, D.; Boulanger, A.; Davis, M.; Boulware, P. Smart Build-Plate for Metal Additive Manufacturing Processes. Sensors 2020, 20, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilelli, S.K.; Schomer, J.J.; Dapino, M.J. Detection of Crack Initiation and Growth Using Fiber Bragg Grating Sensors Embedded into Metal Structures through Ultrasonic Additive Manufacturing. Sensors 2019, 19, 4917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Monaghan, T.; Nguyen, T.; Kay, R.; Friel, R.; Harris, R. Multifunctional metal matrix composites with embedded printed electrical materials fabricated by ultrasonic additive manufacturing. Compos. Part B Eng. 2017, 113, 342–354. [Google Scholar] [CrossRef] [Green Version]
- Bournias-Varotsis, A.; Han, X.; Harris, R.A.; Engstrøm, D.S. Ultrasonic additive manufacturing using feedstock with build-in circuitry for 3D metal embedded electronics. Addit. Manuf. 2019, 29, 100799. [Google Scholar] [CrossRef]
- Hahnlen, R.; Dapino, M.J. NiTi-Al interface strength in ultrasonic additive manufacturing composites. Compos. Part B Eng. 2014, 59, 101–108. [Google Scholar] [CrossRef]
- Schomer, J.J.; Hehr, A.J.; Dapino, M.J. Characterization of embedded fiber optic strain sensors into metallic structures via ultrasonic additive manufacturing. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016; SPIE: Las Vegas, NV, USA, 2016. [Google Scholar]
- Hyer, H.C.; Sweeney, D.C.; Petrie, C.M. Functional fiber-optic sensors embedded in stainless steel components using ultrasonic additive manufacturing for distributed temperature and strain measurements. Addit. Manuf. 2022, 52, 102681. [Google Scholar] [CrossRef]
- Wolcott, P.J.; Sridharan, N.; Babu, S.S.; Miriyev, A.; Frage, N.; Dapino, M.J. Characterisation of Al–Ti dissimilar material joints fabricated using ultrasonic additive manufacturing. Sci. Technol. Weld. Join. 2016, 21, 114–123. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Wang, Z.; Jiang, F. Interfacial texture and bonding strength of Cu/Al laminate metal composite fabricated by ultrasonic additive manufacturing. Sci. Technol. Weld. Join. 2022, 27, 501–511. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Yu, H.; Sun, D.; Liu, W. Ultrasonic Additive Manufacturing of Metallic Materials. Metals 2022, 12, 1912. https://doi.org/10.3390/met12111912
Zhang C, Yu H, Sun D, Liu W. Ultrasonic Additive Manufacturing of Metallic Materials. Metals. 2022; 12(11):1912. https://doi.org/10.3390/met12111912
Chicago/Turabian StyleZhang, Chaoqun, Hongying Yu, Dongbai Sun, and Wen Liu. 2022. "Ultrasonic Additive Manufacturing of Metallic Materials" Metals 12, no. 11: 1912. https://doi.org/10.3390/met12111912
APA StyleZhang, C., Yu, H., Sun, D., & Liu, W. (2022). Ultrasonic Additive Manufacturing of Metallic Materials. Metals, 12(11), 1912. https://doi.org/10.3390/met12111912