Utilization of Converter Slag from Nickel Production by Hydrometallurgical Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.3. Hydrochloric Acid Leaching Test
2.4. Solvent Extraction Test
3. Results and Discussion
3.1. Characterization of Nickel Converter Slag
3.2. Hydrochloric Acid Leaching Studies
3.3. Solvent Extraction of Iron from Slag Leaching Solution
4. Conclusions
- Mineralogical and chemical analyses of converter nickel slag from the “Southern Urals Nickel Plant PJSC” (UNKL) showed that the slag is characterized by an uneven distribution of the target components throughout the slag dump.
- Mineralogical composition is the most significant factor that influences the leaching of slag components. It is shown that the sparingly soluble form of augite in slags reduces the degree of extraction of iron, magnesium and calcium, which are part of this mineral.
- Large-scale laboratory tests confirmed that the proposed process is applicable to the total volume of slag. With this process used in industry, it is possible to involve in processing large volumes of nickel-cobalt technogenic raw materials.
- The possibility of the extraction processing of filtrates from slag decomposition using a mixture of alcohols and ketone as an extractant to obtain concentrated solutions of iron chlorides has been established.
- Obtained using the proposed scheme, silicon-containing residue is characterized by a high specific surface area (250–300 m2·g−1). The use of such material in construction industry is directed towards reducing the cost of production.
- The main advantage of the proposed hydrometallurgical slag processing scheme is the possibility of selective separation of iron from non-ferrous metals with the release of all valuable components into marketable products and the use of the insoluble residue in the construction industry.
- Two urgent tasks at once—providing technogenic raw materials for the production of new and traditional building materials and eliminating the negative impact of waste on the environment during their storage—can be solved through the use of slag processing products in the construction industry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panfilov, M.I.; Shkol’nik, J.S.; Orininskiy, N.V. Pererabotka Shlakov i Bezotkhodnaya Tekhnologiya v Metallurgii; Metallurgiya: Moscow, Russia, 1987. [Google Scholar]
- Aksenov, E.M.; Sadykov, R.K.; Aliskerov, V.A.; Kiperman, J.A.; Komarov, M.A. Technogenic Deposits—Problems and involving prospects in economic circulation. Prospect Prot. Miner. Resour. 2010, 2, 17–20. [Google Scholar]
- Bykhovsky, L.Z.; Sporykhina, L.V. Industrial waste as a reserve to replenish mineral recourses: Status and development problems. Minerals Recourses of Russia. Econ. Manag. 2021, 4, 15–20. [Google Scholar]
- Potapov, D.S.; Svetlov, A.V.; Potapov, S.S.; Men’shikov, Y.P.; Nesterov, D.P.; Makarov, D.V. Experimental modeling of weathering uneven slag copper-nickel production. Mineral. Tekhnogenezisa 2013, 14, 38–49. [Google Scholar]
- Tyszka, R.; Kierczak, J.; Pietranik, A.; Ettler, V.; Mihaljevič, M. Extensive weathering of zinc smelting slag in a heap in Upper Silesia (Poland): Potential environmental risks posed by mechanical disturbance of slag deposits. Appl. Geochem. 2014, 40, 70–81. [Google Scholar] [CrossRef]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R., II. Characteristics and environmental aspects of slag: A review. Appl. Chem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- Khalilova, H.K. The problems of the negative environmental impact of chemical pollutants and possible ways of their prevention. Chem. Probl. 2019, 4, 500–517. [Google Scholar] [CrossRef]
- Habib, A.; Bhatti, H.N.; Iqbal, M. Metallurgical processing strategies for metals recovery from industrial slag. Z. Phys. Chem. 2020, 234, 201–231. [Google Scholar] [CrossRef]
- Ivankov, S.I.; Troitskiy, A.V. Ekologicheskiye aspekty pererabotki nikel’-kobal’tovogo rudnogo i tekhnogennogo syr’ya. Nauchnyye I Tekhnicheskiye Asp. Okhrany Okruz. Sredy 2019, 4, 2–87. [Google Scholar]
- Veselovskiy, A.A.; Laihan, S.A. Methodology for non-waste recycling of dump nickel slag. Bull. South Ural. State Univ. Ser. Metallurgy 2019, 19, 62–70. [Google Scholar]
- Wang, G.C. Philosophy of utilization of slag in civil infrastructure construction. In The Utilization of Slag in Civil Infrastructure Construction; Woodhead Publishing: Sawston, UK, 2016; pp. 115–129. [Google Scholar]
- Šafránek, M.; Vozňáková, I. Use of slug in the construction industry. In Proceedings of the 28th International Conference on Metallurgy and Materials (Metal 2019), Brno, Czech Republic, 22–24 May 2019; pp. 2002–2006. [Google Scholar]
- Sande, J.V.D.; Peys, A.; Hertel, T.; Rahier, H.; Pontikes, Y. Upcycling of non-ferrous metallurgy slags: Identifying the most reactive slag for inorganic polymer construction materials. Resour. Conserv. Recycl. 2020, 154, 104627. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Y.; Lonh, H.; Cheng, Y.; Wu, Y.; Cai, Y.; Jiang, J. Recovery of cobalt and nickel from magnesium-rich sulfate leach liquor with magnesium oxide precipitation method. Miner. Eng. 2021, 169, 106964. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Lu, Z.; Li, X.; Jiang, J.; Niu, Y.; Xiang, Y. Silicomanganese slag: Hydration mechanism and leaching behavior of heavy metal ions. Constr. Build. Mater. 2022, 326, 126857. [Google Scholar] [CrossRef]
- Wang, G.C. Environmental aspects of slag utilization. In The Utilization of Slag in Civil Infrastructure Construction; Woodhead Publishing: Sawston, UK, 2016; pp. 131–153. [Google Scholar]
- Banda, W.; Morgan, N.; Ekseteen, J.J. The role of slag modifiers on the selective recovery of cobalt and copper from waste smelter slag. Miner. Eng. 2002, 15, 899–907. [Google Scholar] [CrossRef]
- Carranza, F.; Iglesias, N.; Mazuelos, A.; Romero, R.; Forcat, O. Ferric leaching of copper slag flotation tailings. Miner. Eng. 2009, 22, 107–110. [Google Scholar] [CrossRef]
- Geng, C.; Wang, H.-J.; Hu, W.-T.; Li, L.; Shi, C.-S. Recovery of iron and copper from copper tailings by coal-based direct reduction and magnetic separation. J. Iron Steel Res. Int. 2017, 24, 991–997. [Google Scholar] [CrossRef]
- Potysz, A.; Kierczak, J. Prospective (Bio)leaching of historical copper slags as an alternative to their disposal. Minerals 2019, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Mikula, K.; Izydorczyk, G.; Skrzypczak, D.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Value-added strategies for the sustainable handling, disposal, or value-added use of copper smelter and refinery wastes. J. Hazard. Mater. 2021, 403, 123602. [Google Scholar] [CrossRef]
- Topçu, M.A.; Rüşen, A.; Küçük, O. Treatment of copper converter slag with deep eutectic solvent as green chemical. Waste Manag. 2021, 132, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.M.; Nayl, A.A.; Daoud, J.A. Leaching and recovery of zinc and copper from brass slag by sulfuric acid. J. Saudi Chem. Soc. 2016, 20, S280–S285. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.; Jing, Z.; Yan-ze, W.; Qiu-ju, L. Experimental Study on Valuable Metals Dissolution from Copper Slag. In Rare Metal Technology; Alam, S., Kim, H., Neelameggham, N.R., Ouchi, T., Oosterhof, H., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Nadirov, R.K.; Mussapyrova, L. Copper smelter slag leaching by using H2SO4 in the presence of dichromate. J. Chem. Technol. Metall. 2019, 54, 657–662. [Google Scholar]
- Feng, Y.; Kero, J.; Yang, Q.X.; Chen, Q.S.; Engstrom, F.; Samuelsson, C. Mechanical activation of granulated copper slag and its influence on hydration heat and compressive strength of blended cement. Materials 2019, 12, 772. [Google Scholar] [CrossRef] [Green Version]
- Khalid, M.K.; Hamuyuni, J.; Agarwal, V.; Pihlasalo, J.; Haapalainen, M.; Lundstrom, M. Sulfuric acid leaching for capturing value from copper rich converter slag. J. Clean. Prod. 2019, 215, 1005–1013. [Google Scholar] [CrossRef]
- Nadirov, R.; Syzdykova, L.; Zhussupova, A. Copper smelter slag treatment by ammonia solution: Leaching process optimization. J. Cent. S. Univ. 2017, 24, 2799–2804. [Google Scholar] [CrossRef]
- Mussapyrova, L.; Nadirova, R.; Baláž, P.; Rajňákd, M.; Bureš, R.; Baláž, M. Selective room-temperature leaching of copper from mechanically activated copper smelter slag. J. Mater. Res. Technol. 2021, 12, 2011–2025. [Google Scholar] [CrossRef]
- Phiri, T.C.; Singh, P.; Nikoloski, A.N. The potential for copper slag waste as a resource for a circular economy: A review—Part II. Miner. Eng. 2021, 172, 107150. [Google Scholar] [CrossRef]
- Zhai, Q.; Liu, R.; Wang, C.; Wen, X.; Li, X.; Sun, W. A novel scheme for the utilization of Cu slag flotation tailings in preparing internal electrolysis materials to degrade printing and dyeing wasterwater. J. Hazard. Mater. 2022, 24 Pt B, 127537. [Google Scholar] [CrossRef]
- Kasikov, A.G. Sever i Rynok: Formirovaniye ekonomicheskogo poryadka (ISSN 2220-802X). Kola Sci. Cent. 2013, 1, 48–52. [Google Scholar]
- Miroyevskiy, G.P.; Popov, I.O.; Golov, A.N.; Koklyanov, Y.B.; Keller, V.V. Podgotovka mednykh konverternykh shlakov k gidrometallurgicheskoy pererabotke. Tsvetnyye Met. 2001, 2, 127–129. [Google Scholar]
- Kasikov, A.G.; Mayorova, E.A. Slag Digestion Method. RU Patent 2568796, 20 November 2015. [Google Scholar]
- Binnemans, K.; Jones, P.T.; Fernández, Á.M.; Torres, V.M. Hydrometallurgical Processes for the Recovery of Metals from Steel Industry By-Products: A Critical Review. J. Sustain. Metall. 2020, 6, 505–540. [Google Scholar] [CrossRef]
- Richard, P.; Cheyrezy, M. Composition of reactive powder concretes. Cem. Concr. Res. 1995, 25, 1501–1511. [Google Scholar] [CrossRef]
- Saji, J.; Reddy, M.L.P. Liquid–liquid extraction separation of iron III from titania wastes using TBP–MIBK mixed solvent system. Hydrometallurgy 2001, 61, 81–87. [Google Scholar] [CrossRef]
- Sokolov, A.; Valeev, D.; Kasikov, A. Solvent Extraction of Iron(III) from Al Chloride Solution of Bauxite HCl Leaching by Mixture of Aliphatic Alcohol and Ketone. Metals 2021, 11, 321. [Google Scholar] [CrossRef]
- Kasikov, A.; Sokolov, A.; Shchelokova, E. Extraction of Iron(III) from Nickel Chloride Solutions by Mixtures of Aliphatic Alcohols and Ketones. Solvent Extr. Ion Exch. 2022, 40, 251–268. [Google Scholar] [CrossRef]
- Lin, L.; Li, R.-H.; Yang, Z.-Y.; Li, X.-Y. Effect of coagulant on acidogenic fermentation of sludge from enhanced primary sedimentation for resource recovery: Comparison between FeCl3 and PACl. Chem. Eng. J. 2017, 325, 681–689. [Google Scholar] [CrossRef]
Sample | Content (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Ni | Co | Cu | Al | Mg | Ca | SiO2 | S | |
811 | 29.22 | 0.46 | 0.07 | 0.021 | 2.09 | 3.40 | 6.49 | 23.71 | 1.8 |
809 | 19.23 | 0.28 | 0.03 | ≤0.01 | 3.22 | 4.66 | 8.97 | 36.30 | 0.93 |
807 | 42.13 | 0.98 | 0.30 | 0.045 | 1.04 | 1.80 | 2.07 | 26.70 | 2.40 |
810 | 20.63 | 0.61 | 0.04 | 0.014 | 2.95 | 5.14 | 7.95 | 32.85 | 1.40 |
808 | 26.34 | 0.28 | 0.06 | 0.016 | 2.52 | 4.04 | 6.93 | 31.43 | 1.40 |
774 | 41.90 | 0.27 | 0.12 | 0.033 | 0.92 | 1.82 | 2.57 | 18.70 | 2.70 |
813 * | 27.5 | 0.50 | 0.10 | 0.02 | 2.36 | 3.81 | 6.48 | 30.20 | 1.59 |
CFe, g·L−1 | CHCl, wt.% | Metal Extraction, % | S Content in Residue, wt.% | ||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Ni | Co | Cu | Mg | Al | Ca | |||
0 | 28.0 | 76.3 | 88.0 | 93.9 | 99.9 | 60.7 | 35.9 | 57.9 | 2.1 |
10 | 26.8 | 71.1 | 86.2 | 90.0 | 99.9 | 57.8 | 35.6 | 55.6 | 4.5 |
20 | 25.6 | 70.4 | 84.7 | 87.5 | 96.3 | 57.0 | 32.2 | 53.2 | 6.9 |
S:L | Filtrate Content, g·L−1 | Metal Extraction, % | ||||||
---|---|---|---|---|---|---|---|---|
Fe | Ni | Co | Cu | Fe | Ni | Co | Cu | |
1:4 | 119.6 | 0.64 | 0.30 | 0.08 | 61.4 | 59.7 | 70.0 | 76.5 |
1:5 | 95.5 | 0.58 | 0.23 | 0.07 | 66.0 | 75.7 | 75.1 | 91.4 |
1:8 | 71.7 | 0.43 | 0.20 | 0.05 | 68.5 | 81.8 | 95.1 | 93.2 |
1:10 | 61.5 | 0.15 | 0.33 | 0.04 | 70.4 | 84.7 | 87.5 | 96.3 |
Sample | Residue Content, % | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Fe | Ni | Co | Cu | Mg | Ca | Al | S | |
774 | 60.1 | 4.4 | 0.03 | 0.01 | 0.002 | 0.9 | 3.1 | 1.33 | 5.5 |
813 | 49.8 | 7.5 | 0.06 | 0.01 | 0.0003 | 2.7 | 7.6 | 1.32 | 1.6 |
Product | Metal Content, g·L−1/wt.% | Metal Extraction, % | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Ni | Co | Cu | Mg | Ca | Al | Fe | Ni | Co | Cu | Mg | Ca | Al | |
Initial | 27.5 | 0.52 | 0.1 | 0.02 | 3.81 | 6.48 | 2.36 | - | - | - | - | - | - | - |
Filtrate | 67.4 | 1.25 | 0.23 | 0.04 | 5.3 | 4.6 | 3.14 | 76.0 | 74.2 | 72.1 | 77.7 | 43.1 | 22.1 | 41.2 |
Washing acid | 8.8 | 0.28 | 0.05 | 0.01 | 1.8 | 0.85 | 1.32 | 10.3 | 17.6 | 18.1 | 18.6 | 17.1 | 5.4 | 16.9 |
Washing solution | 1.2 | 0.01 | 0.005 | 0.001 | 0.1 | 0.35 | 1.1 | 1.3 | 0.8 | 1.5 | 0.04 | 1.3 | 4.8 | 12.4 |
Residue | 7.5 | 0.06 | 0.01 | 0.0003 | 2.7 | 7.6 | 1.32 | 11.2 | 6.9 | 4.1 | 0.7 | 29.1 | 48.2 | 23.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasikov, A.G.; Shchelokova, E.A.; Timoshchik, O.A.; Sokolov, A.Y. Utilization of Converter Slag from Nickel Production by Hydrometallurgical Method. Metals 2022, 12, 1934. https://doi.org/10.3390/met12111934
Kasikov AG, Shchelokova EA, Timoshchik OA, Sokolov AY. Utilization of Converter Slag from Nickel Production by Hydrometallurgical Method. Metals. 2022; 12(11):1934. https://doi.org/10.3390/met12111934
Chicago/Turabian StyleKasikov, Alexander G., Elena A. Shchelokova, Olga A. Timoshchik, and Artem Yu. Sokolov. 2022. "Utilization of Converter Slag from Nickel Production by Hydrometallurgical Method" Metals 12, no. 11: 1934. https://doi.org/10.3390/met12111934
APA StyleKasikov, A. G., Shchelokova, E. A., Timoshchik, O. A., & Sokolov, A. Y. (2022). Utilization of Converter Slag from Nickel Production by Hydrometallurgical Method. Metals, 12(11), 1934. https://doi.org/10.3390/met12111934