Inclusion Characteristics in Steel with CeO2 Nanoparticle Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Dispersion of CeO2 Nanoparticles
2.2. Experimental Procedure
2.3. Characterization Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Takamura, J.; Mizoguchi, S. Roles of oxides in steel performance. In Proceedings of the Sixth International Iron and Steel Congress, Nagoya, Japan, 21–26 October 1990; Iron and Steel Institute of Japan: Tokyo, Japan, 1990; Volume 1, pp. 591–597. [Google Scholar]
- Koseki, T.; Thewlis, G. Inclusion assisted microstructure control in C–Mn and low alloy steel welds. J. Mater. Sci. Technol. 2005, 21, 867–879. [Google Scholar] [CrossRef]
- Liang, W.; Geng, R.; Zhi, J.; Li, J.; Huang, F. Oxide Metallurgy Technology in High Strength Steel: A Review. Materials 2022, 15, 1350. [Google Scholar] [CrossRef] [PubMed]
- Sarma, D.S.; Karasev, A.V.; Jönsson, P.G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int. 2009, 53, 1063–1074. [Google Scholar] [CrossRef] [Green Version]
- Mu, W.Z.; Jönsson, P.G.; Nakajima, K.J. Recent Aspects on the effect of inclusion characteristics on the intragranular ferrite formation in low alloy steels: A review. High Temp. Mater. Proc. 2017, 36, 309–325. [Google Scholar] [CrossRef]
- Kong, H.; Xu, C.; Li, J.L.; Ran, S.L.; Zhang, M.Y.; Qiu, Y.; Shan, M.W. The effect of TiO2 Nanoparticle Adding on Inclusion and Microstructure. Pract. Metallogr. 2019, 56, 96–511. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Kong, H. Inclusion and Microstructure Characteristics in a Steel Sample with TiO2 Nanoparticle Addition and Mg Treatment. Metals 2019, 9, 171. [Google Scholar] [CrossRef] [Green Version]
- Kiviö, M.; Holappa, L.; Iung, T. Addition of Dispersoid Titanium Oxide Inclusions in Steel and Their Influence on Grain Refinement. Metall. Mater. Trans. B 2010, 41, 1194–1204. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, M.Y.; Li, J.L.; Ran, S.L.; Shan, M.W.; Yue, Q.; Kong, H. The effect of MgTiO3 Adding on Inclusion Characteristics. High Temp. Mater. Proc. 2019, 38, 576–581. [Google Scholar]
- Yang, Y.; Zhan, D.; Lei, H.; Li, Y.; Zhang, H. Effect of addition ZrO2 nanoparticles on inclusion characteristics and microstructure in low carbon microalloyed steel. ISIJ Int. 2020, 60, 1948–1956. [Google Scholar] [CrossRef]
- Song, M.M.; Song, B.; Xin, W.B.; Sun, G.L.; Song, G.Y.; Hu, C.L. Effects of rare earth addition on microstructure of C-Mn steel. Ironmak. Steelmak. 2015, 42, 594–599. [Google Scholar] [CrossRef]
- Wen, B.; Song, B. In Situ Observation of the Evolution of Intragranular Acicular Ferrite at Ce-Containing Inclusions in 16Mn Steel. Steel Res. Int. 2012, 83, 487–495. [Google Scholar]
- Adabavazeh, Z.; Hwang, W.S.; Su, Y.H. Effect of Adding Cerium on Microstructure and Morphology of Ce-Based Inclusions Formed in Low-Carbon Steel. Sci. Rep. 2017, 7, 46503. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Wang, L.; Xiong, X.; Chen, L.; Zhuang, C. Modification of Alumina Inclusions in SWRS82B Steel by Adding Rare Earth Cerium. Met. Open Access Metall. J. 2020, 10, 1696. [Google Scholar] [CrossRef]
- Wang, L.J.; Liu, Y.Q.; Wang, Q.; Chou, K.C. Evolution Mechanisms of MgO·Al2O3 Inclusions by Cerium in Spring Steel Used in Fasteners of High-speed Railway. ISIJ. Int. 2015, 55, 970–975. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jiang, Z.; Geng, X.; Chen, M.; Peng, L. Evolution Mechanism of Inclusions in H13 Steel with Rare Earth Magnesium Alloy Addition. ISIJ Int. 2019, 59, 1552–1561. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.Q.; Yuan, Z.X. Mechanical properties and microstructure of high heat input welding CGHAZ of Ce-Ca and Ce-Mg microaIloyed steels. Wuhan Univ. Technol. 2008, 32, 118–122. [Google Scholar]
- Nako, H.; Okazaki, Y.; Speer, J.G. Acicular Ferrite Formation on Ti-Rare Earth Metal-Zr Complex Oxides. ISIJ. Int. 2015, 55, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.H.; Byun, J.S.; Cho, Y.W. Effects of Si and Al on acicular ferrite formation in C-Mn steel. Metall. Mater. Trans. A 2001, 32, 75–83. [Google Scholar] [CrossRef]
- Deng, X.X.; Jiang, M.; Wang, X.H. Mechanisms of inclusion evolution and intra-granular acicular ferrite formation in steels containing rare earth elements. Acta Metall Sin. 2012, 25, 241–248. [Google Scholar]
- Xuan, C.J.; Mu, W.Z.; Olano, Z.I.; Jönsson, P.G.; Nakajima, K.J. Effect of the Ti, Al Contents on the Inclusion Characteristics in Steels with TiO2 and TiN Particle Additions. Steel Research Int. 2016, 87, 911–920. [Google Scholar] [CrossRef]
- Li, N.; Lu, Q.Y.; Wang, Y.Q.; Zhu, Z.H.; Li, X.; Qiu, S.T. Effect of Ce on inclusions modification in 2.9%Si-0.8%Al non-oriented electrical steel. J. Iron Steel Res. 2017, 29, 570–576. [Google Scholar]
- Kusuhiro, M.; Taishi, M. Interfacial Physical Chemistry of High-Temperature Melts; CRC Press: Boca Raton, FL, USA, 2019; p. 74. [Google Scholar]
- Wang, L.Z.; Yang, S.F.; Li, J.S.; Zhang, S.; Ju, J.T. Effect of Mg Addition on the Refinement and Homogenized Distribution of Inclusions in Steel with Different Al Contents. Metall. Mater. Trans. B 2017, 48, 805–818. [Google Scholar] [CrossRef]
No. | C | Si | Mn | P | S | Sol.Al | Ce |
---|---|---|---|---|---|---|---|
1# | 0.045 | 0.21 | 1.39 | 0.010 | 0.0058 | 0.082 | / |
2# | 0.050 | 0.18 | 1.54 | 0.007 | 0.0046 | 0.074 | 0.0003 |
3# | 0.100 | 0.44 | 1.13 | 0.012 | 0.0066 | 0.018 | 0.0067 |
Figure | Position | Al | Mn | S | Ce |
---|---|---|---|---|---|
1 | Point 1 | 100 | / | / | / |
Point 2 | 87.5 | 9.0 | 3.5 | / | |
2 | Point 1 | 16.2 | / | / | 83.8 |
Point 2 | 52.4 | 4.2 | 7.0 | 36.4 | |
3 | Point 1 | 9.8 | / | / | 90.2 |
Point 2 | 38.9 | 7.6 | 11.9 | 41.6 |
C | Si | Mn | P | S | Al | Ce | |
---|---|---|---|---|---|---|---|
Al | 0.091 | 0.0056 | / | / | 0.03 | 0.045 | −0.43 |
Ce | −0.077 | / | / | 1.77 | −8.36 | −2.25 | −0.003 |
No. | Average Size (μm) | Degree of Homogeneity |
---|---|---|
1# | 3.4 | 1.03 |
2# | 3.6 | 1.24 |
3# | 1.8 | 1.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, H.; Cheng, X.; Huang, S.; Qiu, Y. Inclusion Characteristics in Steel with CeO2 Nanoparticle Addition. Metals 2022, 12, 1994. https://doi.org/10.3390/met12111994
Kong H, Cheng X, Huang S, Qiu Y. Inclusion Characteristics in Steel with CeO2 Nanoparticle Addition. Metals. 2022; 12(11):1994. https://doi.org/10.3390/met12111994
Chicago/Turabian StyleKong, Hui, Xiang Cheng, Shoulin Huang, and Yue Qiu. 2022. "Inclusion Characteristics in Steel with CeO2 Nanoparticle Addition" Metals 12, no. 11: 1994. https://doi.org/10.3390/met12111994
APA StyleKong, H., Cheng, X., Huang, S., & Qiu, Y. (2022). Inclusion Characteristics in Steel with CeO2 Nanoparticle Addition. Metals, 12(11), 1994. https://doi.org/10.3390/met12111994