Research Progress on Laser Cladding Alloying and Composite Processing of Steel Materials
Abstract
:1. Research Background
2. Laser Cladding Process of Steel
2.1. Laser Power
2.2. Laser Cladding Speed
2.3. Laser Beam Diameter
2.4. Supply of Cladding Materials
3. Laser Cladding Materials of Steel
- (1)
- The close thermal expansion coefficient principle between cladding materials and the substrate material is provided as follows. Laser cladding is a process in which the cladding materials melt rapidly under laser irradiation and then cool sharply and solidify. Due to the rapid heat and cold, there will be a certain thermal stress between the cladding coating and the substrate. Suppose the thermal expansion coefficient of the cladding materials and the substrate is different. In that case, the thermal cracks between the cladding coating and the substrate are easy to occur under thermal stress, which will affect the performance of the cladding coating. On the contrary, if the thermal expansion coefficient of the cladding materials and the substrate is close, it is beneficial to reduce the thermal stress between the cladding coating and the substrate and reduce the tendency of cracks in the cladding coating.
- (2)
- The second principle is based on similar melting points between cladding materials and substrate materials. After melting the cladding materials and the surface materials of the substrate, the molten pool is formed, and the molten pool solidifies to form the cladding coating. The melting point of the cladding materials and the base material is similar, which can ensure that the cladding materials and the surface material of the substrate melt simultaneously and form a metallurgical combination to reduce the dilution rate of the cladding coating. When the melting point of the cladding materials is much lower than the melting point of the base material, the surface material of the substrate cannot reach the melting point. It cannot melt after the laser energy melting of the cladding materials, and the substrate cannot form a metallurgical combination with the cladding coating. After increasing the laser heat input, the surface material of the substrate melts. At this time, the melting temperature of the cladding materials to form the molten pool exceeds the melting point of the cladding materials. The cladding materials will be vaporized, resulting in the loss of the cladding materials and easy-to-produce pores, shrinkage holes, and other defects in the cladding coating. When the melting point of the cladding materials is much higher than the melting point of the base material, the cladding materials have not been melted when the base material is melted. This process will cause the burning of the base material, and hence it cannot form a good cladding coating.
- (3)
- The third principle is applying the wettability of cladding materials to substrate materials. After the molten pool is formed, the cladding materials need to spread on the surface of the substrate to form the cladding coating. The good wettability between the cladding materials and the substrate is the prerequisite for the molten pool to spread on the surface of the substrate and is also the key to the good molding performance of the cladding coating [33]. The wettability of cladding materials on the surface of the substrate is directly related to the surface tension of the molten pool. Increasing the temperature of the molten pool is an effective way to reduce the surface tension of the molten pool. Still, a too-high temperature of the molten pool will also cause the burning of alloying elements.
3.1. Metal (Alloy) Cladding Materials
3.1.1. Ceramic Cladding Materials
3.1.2. Metal-Ceramic Composite Cladding Materials
4. Laser Cladding Alloying and Compounding of Steel Materials
4.1. Laser Cladding Alloying of Steel Materials
4.2. Laser Cladding Compounding of Steel Materials
5. Conclusions
- (1)
- Laser cladding technology has been widely used in the alloying and compounding of steel, which provides a reliable technical choice for improving steel’s surface properties and extending steel’s service life.
- (2)
- The current research on laser cladding alloying and compounding of steel includes many aspects, such as process control, cladding materials’ design and selection, microstructure, and property characterization. According to the purpose of laser cladding, the design of cladding materials matching the requirements deserves more attention.
- (3)
- Laser cladding alloying and composite surface modification can improve steel materials’ wear and corrosion resistance. Compared with laser cladding alloying, laser cladding can better improve the wear resistance of steel. In the future, the constitutive relationship between the laser cladding process, cladding materials, microstructure, and properties of steel should be further studied.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maya, J.; Sivaprasad, K.; Kumar, G.V.S.; Baitimerov, R.; Lykov, P.; Prashanth, K.G. Microstructure, Mechanical Properties, and Corrosion Behavior of 06Cr15Ni4CuMo Processed by Using Selective Laser Melting. Metals 2022, 12, 1303. [Google Scholar] [CrossRef]
- Parapurath, S.; Jacob, L.; Gunister, E.; Vahdati, N. Effect of Microstructure on Electrochemical Properties of the EN S275 Mild Steel under Chlorine-Rich and Chlorine-Free Media at Different pHs. Metals 2022, 12, 1386. [Google Scholar] [CrossRef]
- Su, C.; Feng, G.; Zhi, J.; Zhao, B.; Wu, W. The Effect of Rare Earth Cerium on Microstructure and Properties of Low Alloy Wear-Resistant Steel. Metals 2022, 12, 1358. [Google Scholar] [CrossRef]
- Radionova, L.V.; Samodurova, M.N.; Sarafanov, A.E.; Bykov, V.A.; Glebov, L.A.; Pashkeev, K.Y. Elevation of the Wear Resistance of Roller Dies for the Production of Wires from Titanium Alloys. Metallurgist 2021, 64, 1188–1197. [Google Scholar] [CrossRef]
- Lanzutti, A.; Andreatta, F.; Rossi, L.; Di Benedetto, P.; Causero, A.; Magnan, M.; Fedrizzi, L. Corrosion fatigue failure of a high carbon CoCrMo modular hip prosthesis: Failure analysis and electrochemical study. Eng. Fail. Anal. 2019, 105, 856–868. [Google Scholar] [CrossRef]
- Dunstan, M.K.; Paramore, J.D.; Fang, Z.Z.; Ligda, J.P.; Butler, B.G. Analysis of microstructural facet fatigue failure in ultra-fine grained powder metallurgy Ti-6Al-4V produced through hydrogen sintering. Int. J. Fatigue 2020, 131, 105355. [Google Scholar] [CrossRef]
- Qinguan, X. Study on Laser Cladding Coating of Ceramic Particle Reinforced Iron Base Alloy. Jinan, Shandong University, 2012. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201301&filename=1012464676.nh (accessed on 10 January 2020).
- Zongsheng, F. Analysis of Attentions Needed in Wear and Maintenance of Mineral Processing Equipment. World Nonferrous Met. 2019, 6, 50–51. [Google Scholar]
- Liu, J.; Li, L.; Zhang, Y.; Xie, X. Attenuation of laser power of a focused Gaussian beam during interaction between a laser and powder in coaxial laser cladding. J. Phys. D Appl. Phys. 2005, 38, 1546–1550. [Google Scholar] [CrossRef]
- Nan, Y.; Xichen, Y. Model of Interaction between Metal Powder Particle and Laser Beam in Laser Cladding. Acta Opt. Sin. 2008, 28, 1745–1750. [Google Scholar]
- Yue, T.; Xie, H.; Lin, X.; Yang, H.; Meng, G. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J. Alloys Compd. 2013, 587, 588–593. [Google Scholar] [CrossRef]
- Fallah, V.; Corbin, S.F.; Khajepour, A. Solidification behaviour and phase formation during pre-placed laser cladding of Ti45Nb on mild steel. Surf. Coat. Technol. 2010, 204, 2400–2409. [Google Scholar] [CrossRef]
- Zhai, L.; Ban, C.; Zhang, J.; Yao, X. Characteristics of dilution and microstructure in laser clad-ding Ni-Cr-B-Si coating assisted by electromagnetic compound field. Mater. Lett. 2019, 243, 195–198. [Google Scholar] [CrossRef]
- Zeng, J.; Lian, G.; Feng, M.; Lin, Z. Inclined shaping quality and optimization of laser cladding. Optik 2022, 266, 169598. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; Zhang, Y.; Lian, G.; Cao, Q.; Yang, J. Influence of laser power on the microstructure and properties of in-situ NbC/WCoB–TiC coating by laser cladding. Mater. Chem. Phys. 2022, 290, 126636. [Google Scholar] [CrossRef]
- Shu, F.; Zhang, B.; Liu, T.; Sui, S.; Liu, Y.; He, P.; Liu, B.; Xu, B. Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings. Surf. Coat. Technol. 2018, 358, 667–675. [Google Scholar] [CrossRef]
- Nie, M.; Zhang, S.; Wang, Z.; Zhang, C.; Chen, H.; Chen, J. Effect of laser power on microstructure and interfacial bonding strength of laser cladding 17-4PH stainless steel coatings. Mater. Chem. Phys. 2021, 275, 125236. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Han, L.; Dong, C. Influence of laser power on microstructure and properties of laser clad Co-based amorphous composite coatings. Surf. Interfaces 2016, 6, 18–23. [Google Scholar] [CrossRef]
- Fan, P.; Zhang, G. Study on process optimization of WC-Co50 cermet composite coating by laser cladding. Int. J. Refract. Met. Hard Mater. 2019, 87, 105133. [Google Scholar] [CrossRef]
- Kai-Ming, W.; Han-Guang, F.; Yu-Long, L.; Yong-Ping, L.; Shi-Zhong, W.; Zhen-Qing, S. Effect of power on microstructure and properties of laser cladding NiCrBSi composite coating. Trans. IMF 2017, 95, 328–336. [Google Scholar] [CrossRef]
- Fu, F.; Cheng, H.; Feng, J.; Chang, G.; Liu, M.; Meng, Y.; Cao, X. Influence of laser scanning speed on corrosion resistance and hardness properties of Fe-Mn-Si-Cr-Ni-Co alloy coating. Integr. Ferroelectr. 2019, 198, 109–115. [Google Scholar] [CrossRef]
- Ramachandiran, N.; Asgari, H.; Dibia, F.; Eybel, R.; Gerlich, A.; Toyserkani, E. Effect of non-lamellar α precipitate morphology on the mechanical properties of Ti5553 parts made by laser powder-bed fusion at high laser scan speeds. Mater. Sci. Eng. A 2022, 841, 143039. [Google Scholar] [CrossRef]
- Guo, W.; Feng, B.; Yang, Y.; Ren, Y.; Liu, Y.; Yang, H.; Yang, Q.; Cui, L.; Tong, X.; Hao, S. Effect of laser scanning speed on the microstructure, phase transformation and mechanical property of NiTi alloys fabricated by LPBF. Mater. Des. 2022, 215, 110460. [Google Scholar] [CrossRef]
- Goodarzi, D.M.; Pekkarinen, J.; Salminen, A. Analysis of laser cladding process parameter influence on the clad bead geometry. Weld. World 2017, 61, 883–891. [Google Scholar] [CrossRef]
- Wang, G. Establishment of Laser Heat Source Model Based on Energy Distribution and Its Simulation Application; Harbin Institute of Technology: Harbing, China, 2017; Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201801&filename=1017864357.nh (accessed on 12 January 2020).
- Kong, Y.; Zhao, L.; Zhu, L.; Huang, H. The selection of laser beam diameter in directed energy deposition of austenitic stainless steel: A comprehensive assessment. Addit. Manuf. 2022, 52, 102646. [Google Scholar] [CrossRef]
- Lou, L.-Y.; Liu, K.-C.; Jia, Y.-J.; Ji, G.; Wang, W.; Li, C.-J.; Li, C.-X. Microstructure and properties of lightweight Al0.2CrNbTiV refractory high entropy alloy coating with different dilutions deposited by high speed laser cladding. Surf. Coat. Technol. 2022, 447, 128873. [Google Scholar] [CrossRef]
- Han, T.; Xiao, M.; Zhang, Y.; Shen, Y. Laser cladding composite coatings by Ni–Cr–Ti–B4C with different process parameters. Mater. Manuf. Process. 2019, 34, 898–906. [Google Scholar] [CrossRef]
- Cai, Y.; Cui, Y.; Zhu, L.; Tian, R.; Geng, K.; Li, H.; Han, J. Enhancing the (FeMnCrNiCo + TiC) cladding layer by in-situ laser remelting. Surf. Eng. 2021, 37, 1496–1502. [Google Scholar] [CrossRef]
- Han, T.; Xiao, M.; Zhang, Y.; Shen, Y. Laser cladding Ni-Ti-Cr alloy coatings with different process parameters. Mater. Manuf. Process. 2019, 34, 1710–1718. [Google Scholar] [CrossRef]
- Yuping, X.; Wenqing, S.; Jiang, H.; Sidong, L.; Fenjv, A.; Yongqiang, L. Research status and application of laser cladding technology. Equip. Manuf. Technol. 2017, 6, 50–53. [Google Scholar]
- Yajiang, L.; Jianing, L. Laser Welding/Cutting/Cladding Technology; Chemical Industry Press: Beijing, China, 2016. [Google Scholar]
- Muvvala, G.; Karmakar, D.P.; Nath, A.K. Monitoring and assessment of tungsten carbide wettability in laser cladded metal matrix composite coating using an IR pyrometer. J. Alloys Compd. 2017, 714, 514–521. [Google Scholar] [CrossRef]
- Shi, F.; Zhang, Q.; Xu, C.; Hu, F.; Yang, L.; Zheng, B.; Song, Z. In-situ synthesis of NiCoCrMnFe high entropy alloy coating by laser cladding. Opt. Laser Technol. 2022, 151, 108020. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Hu, C.; Dou, J.; Yu, H.; Chen, C.; Gu, G. Microstructure, mechanical and biological properties of laser cladding derived CaO-SiO2-MgO system ceramic coatings on titanium alloys. Appl. Surf. Sci. 2021, 548, 149296. [Google Scholar] [CrossRef]
- Hu, D.; Liu, Y.; Chen, H.; Liu, J.; Wang, M.; Deng, L. Microstructure and properties of Ta-reinforced NiCuBSi + WC composite coating deposited on 5Cr5MoSiV1 steel substrate by laser cladding. Opt. Laser Technol. 2021, 142, 107210. [Google Scholar] [CrossRef]
- Ibrahim, M.Z.; Sarhan, A.A.; Kuo, T.; Yusof, F.; Hamdi, M. Characterization and hardness enhancement of amorphous Fe-based metallic glass laser cladded on nickel-free stainless steel for biomedical implant application. Mater. Chem. Phys. 2019, 235, 121745. [Google Scholar] [CrossRef]
- Han, B.; Li, G.; Chen, Z.; Zhang, G. Microstructure and Wear Property of Graphene Nanoplatelets Reinforced Nickel-Based Composite Coating by Laser Cladding. Metals 2022, 12, 1247. [Google Scholar] [CrossRef]
- Liu, X.; Bi, J.; Meng, Z.; Li, R.; Li, Y.; Zhang, T. Tribological behaviors of high-hardness Co-based amorphous coatings fabricated by laser cladding. Tribol. Int. 2021, 162, 107142. [Google Scholar] [CrossRef]
- Huan, C.; He, Y.; Su, Q.; Zuo, L.; Ren, C.; Xu, H.; Dong, K.; Liu, Y. Properties of AlFeNiCrCoTi0.5 High-Entropy Alloy Particle-Reinforced 6061Al Composites Prepared by Extrusion. Metals 2022, 12, 1325. [Google Scholar] [CrossRef]
- Xiong, K.; Huang, L.; Wang, X.; Yu, L.; Feng, W. Cooling-Rate Effect on Microstructure and Mechanical Properties of Al0.5CoCrFeNi High-Entropy Alloy. Metals 2022, 12, 1254. [Google Scholar] [CrossRef]
- Rudolf, R.; Majerič, P.; Lazić, V.; Grgur, B. Development of a New AuCuZnGe Alloy and Determination of Its Corrosion Properties. Metals 2022, 12, 1284. [Google Scholar] [CrossRef]
- Khorram, A.; Jamaloei, A.D.; Paidar, M.; Cao, X. Laser cladding of Inconel 718 with 75Cr3C2 + 25(80Ni20Cr) powder: Statistical modeling and optimization. Surf. Coat. Technol. 2019, 378, 124933. [Google Scholar] [CrossRef]
- Lizzul, L.; Sorgato, M.; Bertolini, R.; Ghiotti, A.; Bruschi, S.; Fabbro, F.; Rech, S. On the influence of laser cladding parameters and number of deposited layers on as-built and machined AISI H13 tool steel multilayered claddings. CIRP J. Manuf. Sci. Technol. 2021, 35, 361–370. [Google Scholar] [CrossRef]
- Shang, X.; Liu, Q.; Guo, Y.; Ding, K.; Liao, T.; Wang, F. Nano-TiC reinforced [Cr–Fe4Co4Ni4]Cr3 high-entropy-alloy composite coating fabricated by laser cladding. J. Mater. Res. Technol. 2022, 21, 2076–2088. [Google Scholar] [CrossRef]
- Wei, A.; Tang, Y.; Tong, T.; Wan, F.; Yang, S.; Wang, K. Effect of WC on Microstructure and Wear Resistance of Fe-Based Coating Fabricated by Laser Cladding. Coatings. 2022, 12, 1209. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, B.; Wang, H.; Wang, C. Microstructure and nanoindentation measurement of residual stress in Fe-based coating by laser cladding. J Mater. Sci. 2012, 47, 2122–2126. [Google Scholar] [CrossRef]
- Lyu, Y.; Sun, Y.; Yang, Y. Non-Vacuum Sintering Process of WC/W2C Reinforced Ni-Based Coating on Steel. Met. Mater. Int. 2016, 22, 311–318. [Google Scholar] [CrossRef]
- Liu, S.; Chen, H.; Zhao, X.; Fan, L.; Guo, X.; Yin, Y. Corrosion behavior of Ni-based coating containing spherical tungsten carbides in hydrochloric acid solution. J. Iron Steel Res. Int. 2019, 26, 191–199. [Google Scholar] [CrossRef]
- Li, X.; Zhu, W.; Shen, H.; Cai, J.; Guan, Q.; Lyu, P.; Li, Y. Microstructures and high-temperature oxidation behavior of laser cladded NiCoCrAlYSi coating on Inconel 625 Ni-based superalloy modified via high current pulsed Electron beam. Surf. Coat. Technol. 2021, 427, 127796. [Google Scholar] [CrossRef]
- Han, T.; Xiao, M.; Zhang, Y.; Shen, Y. Effect of Cr content on microstructure and properties of Ni-Ti-xCr coatings by laser cladding. Optik 2018, 179, 1042–1048. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.; Wang, J. In-situ reactive fabrication and effect of phosphorus on microstructure evolution of Ni/Ni–Al intermetallic composite coating by laser cladding. Mater. Des. 2016, 105, 171–178. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, Q.; Wang, H.; Shu, F.; Zhao, H.; He, W.; Yu, Z. Microstructure and mechanical properties of Co-based alloy coatings fabricated by laser cladding and plasma arc spray welding. J. Alloys Compd. 2019, 785, 846–854. [Google Scholar] [CrossRef]
- Han, J.; Yoo, B.; Im, H.J.; Oh, C.-S.; Choi, P.-P. Microstructural evolution of the heat affected zone of a Co–Ti–W alloy upon laser cladding with a CoNiCrAlY coating. Mater. Charact. 2019, 158, 109998. [Google Scholar] [CrossRef]
- Qin, R.; Zhang, X.; Guo, S.; Sun, B.; Tang, S.; Li, W. Laser cladding of high Co–Ni secondary hardening steel on 18Cr2Ni4WA steel. Surf. Coat. Technol. 2016, 285, 242–248. [Google Scholar] [CrossRef]
- Niederhauser, S.; Karlsson, B. Fatigue behaviour of Co–Cr laser cladded steel plates for railway applications. Wear 2005, 258, 1156–1164. [Google Scholar] [CrossRef]
- Cui, G.; Han, B.; Zhao, J.; Li, M. Comparative study on tribological properties of the sulfurizing layers on Fe, Ni and Co based laser cladding coatings. Tribol. Int. 2019, 134, 36–49. [Google Scholar] [CrossRef]
- Kuang, S.; Zhou, F.; Liu, W.; Liu, Q. Al2O3/MC particles reinforced MoFeCrTiWNbx high-entropy-alloy coatings prepared by laser cladding. Surf. Eng. 2022, 38, 158–165. [Google Scholar] [CrossRef]
- Yuan, S.; Li, H.; Han, C.; Li, W.; Xu, X.; Chen, C.; Wei, R.; Wang, T.; Wu, S.; Li, F. Feconicral0.6 high-entropy alloy coating on Q235 steel fabricated by laser cladding. Mater. Sci. Technol. 2022, 1–9. [Google Scholar] [CrossRef]
- Chang, F.; Cai, B.; Zhang, C.; Huang, B.; Li, S.; Dai, P. Thermal stability and oxidation resistance of FeCrxCoNiB high-entropy alloys coatings by laser cladding. Surf. Coat. Technol. 2018, 359, 132–140. [Google Scholar] [CrossRef]
- Li, G.; Zhang, L.; Liu, D.; Yu, P.; Liaw, P.; Liu, R. Gravity influence on solidification and segregation of CoCrFeNiCu/Y high entropy alloy. Mater. Chem. Phys. 2018, 210, 315–319. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, L.; Cui, Y.; Geng, K.; Manladan, S.M.; Luo, Z.; Han, J. Strengthening mechanisms in multi-phase FeCoCrNiAl1.0 high-entropy alloy cladding layer. Mater. Charact. 2019, 159, 110037. [Google Scholar] [CrossRef]
- Gwalani, B.; Soni, V.; Waseem, O.A.; Mantri, S.A.; Banerjee, R. Laser additive manufacturing of compositionally graded AlCrFeMoVx (x = 0 to 1) high-entropy alloy system. Opt. Laser Technol. 2019, 113, 330–337. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, D.; Xiong, Y.; Zhu, X.; Li, S.; Liu, J.; Chen, T. Preparation of a hydroxyapatite–silver gradient bioactive ceramic coating with porous structure by laser cladding: A study of in vitro bioactivity. Ceram. Int. 2022, 48, 30468–30481. [Google Scholar] [CrossRef]
- Li, Z.; Wei, M.; Xiao, K.; Bai, Z.; Xue, W.; Dong, C.; Wei, D.; Li, X. Microhardness and wear resistance of Al2O3-TiB2-TiC ceramic coatings on carbon steel fabricated by laser cladding. Ceram. Int. 2018, 45, 115–121. [Google Scholar] [CrossRef]
- Gengxiang, H.; Xun, C.; Yonghua, R. Fundamentals of Material Science; Shanghai Jiao Tong University Press: Shanghai, China, 2010. [Google Scholar]
- Li, Y.; Zhang, D.; Wang, H.; Cong, W. Fabrication of a TiC-Ti Matrix Composite Coating Using Ultrasonic Vibration-Assisted Laser Directed Energy Deposition: The Effects of Ultrasonic Vibration and TiC Content. Metals 2021, 11, 693. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, T.; Hu, C.; Wu, H.; Liu, H.; Ma, X. Utilizing carbon nanotubes in ceramic particle reinforced MMC coatings deposited by laser cladding with Inconel 625 wire. J. Mater. Res. Technol. 2021, 13, 2026–2042. [Google Scholar] [CrossRef]
- Huashun, Y. Metal Substrate Composites Materials and Preparation Technology; Chemical Industry Press: Beijing, China, 2006. [Google Scholar]
- Jiang, C.; Zhang, J.; Chen, Y.; Hou, Z.; Zhao, Q.; Li, Y.; Zhu, L.; Zhang, F.; Zhao, Y. On enhancing wear resistance of titanium alloys by laser cladded WC-Co composite coatings. Int. J. Refract. Met. Hard Mater. 2022, 107, 105902. [Google Scholar] [CrossRef]
- Polozov, I.; Gracheva, A.; Popovich, A. Processing, Microstructure, and Mechanical Properties of Laser Additive Manufactured Ti2AlNb-Based Alloy with Carbon, Boron, and Yttrium Microalloying. Metals 2022, 12, 1304. [Google Scholar] [CrossRef]
- Chen, K.; Pan, H.; Wu, M.; Wang, X.; Li, D. Wear-Resistant Fe6AlCoCrNi Medium-Entropy Alloy Coating Made by Laser Cladding. Metals 2022, 12, 1686. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, Z.; Liu, Q.; Kong, Y.; Guo, S.; Liu, C. Electrochemical Behavior and Passive Film Properties of Hastelloy C22 Alloy, Laser-Cladding C22 Coating, and Ti–6Al–4V Alloy in Sulfuric Acid Dew-Point Corrosion Environment. Metals 2022, 12, 683. [Google Scholar] [CrossRef]
- Lin, C.-M.; Kai, W.-Y.; Su, C.-Y.; Key, K.-H. Empirical alloys-by-design theory calculations to the microstructure evolution mechanical properties of Mo-doped laser cladding NiAl composite coatings on medium carbon steel substrates. J. Alloys Compd. 2017, 702, 679–686. [Google Scholar] [CrossRef]
- Wang, K.; Chang, B.; Lei, Y.; Fu, H.; Lin, Y. Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding. Metals 2017, 7, 551. [Google Scholar] [CrossRef] [Green Version]
- Jie, G.; Yan, S.; Kangning, W.; Qiang, S.; Canming, W. Effect of Fe content on microstructure and corrosion resistance of Ni-based alloy formed by laser cladding. Surf. Coat. Technol. 2022, 446, 128761. [Google Scholar] [CrossRef]
- Feng, X.; Wang, H.; Liu, X.; Wang, C.; Cui, H.; Song, Q.; Huang, K.; Li, N.; Jiang, X. Effect of Al content on wear and corrosion resistance of Ni-based alloy coatings by laser cladding. Surf. Coat. Technol. 2021, 412, 126976. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, A.; Xiong, D.; Wang, Z.; Zhou, D.; Li, S.; Zhang, H. Effect of Cr content on microstructure and oxidation resistance of laser-clad Cu-Ni-Fe-Mo-xCr alloy coating. Surf. Coat. Technol. 2019, 384, 125316. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, T.; Xiao, M.; Shen, Y. Effect of Nb content on microstructure and properties of laser cladding FeNiCoCrTi0.5Nbx high-entropy alloy coating. Optik 2019, 198, 163316. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, S.; Deng, Y.; Guo, X. Microstructure stability and high temperature wear behavior of an austenite aging steel coating by laser cladding. Mater. Charact. 2021, 184, 111700. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, G.; Wang, Y.; Li, H.; Qin, Z.; Lu, X. Crack-free Fe-based amorphous coating synthesized by laser cladding. Mater. Lett. 2018, 210, 46–50. [Google Scholar] [CrossRef]
- Wang, Q.; Qian, R.; Yang, J.; Niu, W.; Zhou, L.; Pan, X.; Su, C. Effect of High-Speed Powder Feeding on Microstructure and Tribological Properties of Fe-Based Coatings by Laser Cladding. Coatings 2021, 11, 1456. [Google Scholar] [CrossRef]
- Yong, Y.; Fu, W.; Deng, Q.; Chen, D. A comparative study of vision detection and numerical simulation for laser cladding of nickel-based alloy. J. Manuf. Process. 2017, 28, 364–372. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, X.; Jin, G.; Feng, X.; Lu, B.; Song, Q.; Yuan, C. Effect of in-situ synthesis of multilayer graphene on the microstructure and tribological performance of laser cladded Ni-based coatings. Appl. Surf. Sci. 2019, 495, 143581. [Google Scholar] [CrossRef]
- Erdakov, I.; Glebov, L.; Pashkeev, K.; Bykov, V.; Bryk, A.; Lezin, V.; Radionova, L. Effect of the Ti6Al4V Alloy Track Trajectories on Mechanical Properties in Direct Metal Deposition. Machines 2020, 8, 79. [Google Scholar] [CrossRef]
- Chen, B.; Wang, T.; Xi, X.; Tan, C.; Song, X. Additive manufacturing of Ti-Al functionally graded material by laser based directed energy deposition. Rapid Prototyp. J. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Li, C.; Han, X.; Zhang, D.; Gao, X.; Jia, T. Quantitative analysis and experimental study of the influence of process parameters on the evolution of laser cladding. J. Adhes. Sci. Technol. 2021, 36, 1894–1920. [Google Scholar] [CrossRef]
- de Sousa, J.M.S.; Ratusznei, F.; Pereira, M.; Castro, R.D.M.; Curi, E.I.M. Abrasion resistance of Ni-Cr-B-Si coating deposited by laser cladding process. Tribol. Int. 2020, 143, 106002. [Google Scholar] [CrossRef]
- Kimme, J.; Zeisig, J.; Fröhlich, A.; Kräusel, V. Technology Innovation for the Manual Laser Cladding of High-Alloy Tool Steels. Metals 2021, 11, 1820. [Google Scholar] [CrossRef]
- Farzaneh, A.; Khorasani, M.; Farabi, E.; Gibson, I.; Leary, M.; Ghasemi, A.; Rolfe, B. Sandwich structure printing of Ti-Ni-Ti by directed energy deposition. Virtual Phys. Prototyp. 2022, 17, 1006–1030. [Google Scholar] [CrossRef]
- Zhou, Y.; Qu, W.; Zhou, F.; Li, X.; Song, L.; Zhu, Q. Thermo-fluid flow behavior of the IN718 molten pool in the laser directed energy deposition process under magnetic field. Rapid Prototyp. J. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Radionova, L.V.; Samodurova, M.N.; Chaplygin, B.A. Improving the Performance Characteristics of the Drawing Machine Intermediate Block Working Surface by Additive Technologies. IOP Conf. Series Mater. Sci. Eng. 2020, 969, 012108. [Google Scholar] [CrossRef]
- Samodurova, M.; Shaburova, N.; Samoilova, O.; Radionova, L.; Zakirov, R.; Pashkeev, K.; Myasoedov, V.; Erdakov, I.; Trofimov, E. A Study of Characteristics of Aluminum Bronze Coatings Applied to Steel Using Additive Technologies. Materials 2020, 13, 461. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; He, X.; Gao, L.; Su, G.; Xu, C.; Xu, N. Study on crack behavior of laser cladding ceramic-metal composite coating with high content of WC. Ceram. Int. 2022, 48, 17460–17470. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Y.; Lu, B.; Tan, N.; Cai, L.; Yong, Q. Effect of WC content on microstructure and properties of high-speed laser cladding Ni-based coating. Opt. Laser Technol. 2022, 155, 108449. [Google Scholar] [CrossRef]
- Qin, L.; Ren, P.; Yi, Y.; Xie, T.; Hu, Y.; Chen, D.; Zhou, S. Effect of Al2O3 content on the high-temperature oxidation behaviour of CoCrAlYTa coatings produced by laser-induction hybrid cladding. Corros. Sci. 2022, 209, 110739. [Google Scholar] [CrossRef]
- Bartkowski, D.; Bartkowska, A.; Piasecki, A.; Jurči, P. Influence of Laser Cladding Parameters on Microstructure, Microhardness, Chemical Composition, Wear and Corrosion Resistance of Fe–B Composite Coatings Reinforced with B4C and Si Particles. Coatings 2020, 10, 809. [Google Scholar] [CrossRef]
- Hulka, I.; Uțu, I.D.; Avram, D.; Dan, M.L.; Pascu, A.; Stanciu, E.M.; Roată, I.C. Influence of the Laser Cladding Parameters on the Morphology, Wear and Corrosion Resistance of WC-Co/NiCrBSi Composite Coatings. Materials 2021, 14, 5583. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; Zhu, L.; Zhang, J.; Yang, Z.; Xue, P. Statistical analysis and multi-objective process optimization of laser cladding TiC-Inconel718 composite coating. Optik 2021, 240, 166828. [Google Scholar] [CrossRef]
- Wu, Q.; Zhong, N.; Liu, B.; Fan, C.; Li, W.; Yin, Y. Microstructure and corrosion behaviour of laser-clad TiC–Cr7C3–CNTs cermet coating on 304 stainless steel substrate. Corros. Eng. Sci. Technol. 2016, 51, 136–145. [Google Scholar] [CrossRef]
- Li, Y.; Su, K.; Bai, P.; Wu, L. Microstructure and property characterization of Ti/TiBCN reinforced Ti based composite coatings fabricated by laser cladding with different scanning speed. Mater. Charact. 2019, 159, 110023. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, T.; Guan, C.; Sun, J.; Tan, X. Microstructure and friction coefficient of ceramic (TiC, TiN and B4C) reinforced Ni-based coating by laser cladding. Ceram. Int. 2019, 45, 20824–20836. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, T.; Zhou, K.; Chen, Z.; Gao, Y. Research Progress on Laser Cladding Alloying and Composite Processing of Steel Materials. Metals 2022, 12, 2055. https://doi.org/10.3390/met12122055
Han T, Zhou K, Chen Z, Gao Y. Research Progress on Laser Cladding Alloying and Composite Processing of Steel Materials. Metals. 2022; 12(12):2055. https://doi.org/10.3390/met12122055
Chicago/Turabian StyleHan, Tengfei, Kexin Zhou, Zhongyu Chen, and Yuesheng Gao. 2022. "Research Progress on Laser Cladding Alloying and Composite Processing of Steel Materials" Metals 12, no. 12: 2055. https://doi.org/10.3390/met12122055
APA StyleHan, T., Zhou, K., Chen, Z., & Gao, Y. (2022). Research Progress on Laser Cladding Alloying and Composite Processing of Steel Materials. Metals, 12(12), 2055. https://doi.org/10.3390/met12122055