Mechanical and Tribological Behavior of Gravity and Squeeze Cast Novel Al-Si Alloy
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Microstructure
3.2. Hardness
3.3. Tensile Properties
3.4. Wear Behavior
3.5. SEM Surface Analysis of the Worn out Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooker, A.D.; Ward, J.; Wang, L. Lightweighting impacts on fuel economy, cost, and component losses. SAE Tech. Pap. 2013, 2. [Google Scholar] [CrossRef] [Green Version]
- Cann, J.L.; De Luca, A.; Dunand, D.C.; Dye, D.; Miracle, D.B.; Oh, H.S.; Olivetti, E.A.; Pollock, T.M.; Poole, W.J.; Yang, R.; et al. Sustainability through alloy design: Challenges and opportunities. Prog. Mater. Sci. 2021, 117, 100722. [Google Scholar] [CrossRef]
- Imran, M.; Khan, A.R.A. Characterization of Al-7075 metal matrix composites: A review. J. Mater. Res. Technol. 2019, 8, 3347–3356. [Google Scholar] [CrossRef]
- Vashisht, S.; Rakshit, D. Recent advances and sustainable solutions in automobile air conditioning systems. J. Clean. Prod. 2021, 329, 129754. [Google Scholar] [CrossRef]
- Milman, Y.V. High-Strength Aluminum Alloys. Met. Mater. High Struct. Effic. 2004, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Inoue, A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 1998, 43, 365–520. [Google Scholar] [CrossRef]
- Lin, T.C.; Cao, C.; Sokoluk, M.; Jiang, L.; Wang, X.; Schoenung, J.M.; Lavernia, E.J.; Li, X. Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Ummethala, R.; Singh, N.; Tang, S.; Suryanarayana, C.; Eckert, J.; Prashanth, K.G. Selective laser melting of aluminum and its alloys. Materials 2020, 13, 4564. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, K.K.; Mishra, R.S. Aluminum Alloys. Metall. Des. Alloy. Hierarchical Microstruct. 2017, 57–176. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, G.Y.; Park, G.H.; Kim, H.A.; Lee, A.Y.; Scudino, S.; Prashanth, K.G.; Kim, D.H.; Eckert, J.; Lee, M.H. High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Hu, K.; Wang, L.; Zhang, B.; Liu, X. Morphological evolution and strengthening behavior of α-Al(Fe,Mn)Si in Al–6Si–2Fe–xMn alloys. Results Phys. 2017, 7, 1051–1054. [Google Scholar] [CrossRef]
- Fabrizi, A.; Ferraro, S.; Timelli, G. The Influence of Fe, Mn and Cr Additions on the Formation of Iron-Rich Intermetallic Phases in an Al-Si Die-Casting Alloy. In Shape Casting: 5th International Symposium 2014; Wiley: Hoboken, NJ, USA, 2014; pp. 277–284. [Google Scholar] [CrossRef]
- Wang, K.; Tang, P.; Huang, Y.; Zhao, Y.; Li, W.; Tian, J. Characterization of microstructures and tensile properties of recycled Al-Si-Cu-Fe-Mn alloys with individual and combined addition of titanium and cerium. Scanning 2018, 2018, 1–14. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Scudino, S.; Klauss, H.J.; Surreddi, K.B.; Löber, L.; Wang, Z.; Chaubey, A.K.; Kühn, U.; Eckert, J. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng. A 2014, 590, 153–160. [Google Scholar] [CrossRef]
- Ma, P.; Jia, Y.; Prashanth, K.G.; Yu, Z.; Li, C.; Zhao, J.; Yang, S.; Huang, L. Effect of Si content on the microstructure and properties of Al-Si alloys fabricated using hot extrusion. J. Mater. Res. 2017, 32, 2210–2217. [Google Scholar] [CrossRef]
- Ma, P.; Prashanth, K.; Scudino, S.; Jia, Y.; Wang, H.; Zou, C.; Wei, Z.; Eckert, J. Influence of Annealing on Mechanical Properties of Al-20Si Processed by Selective Laser Melting. Metals 2014, 4, 28–36. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Damodaram, R.; Scudino, S.; Wang, Z.; Prasad Rao, K.; Eckert, J. Friction welding of Al-12Si parts produced by selective laser melting. Mater. Des. 2014, 57, 632–637. [Google Scholar] [CrossRef]
- Gokuldoss Prashanth, K.; Scudino, S.; Eckert, J. Tensile Properties of Al-12Si Fabricated via Selective Laser Melting (SLM) at Different Temperatures. Technologies 2016, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Prashanth, K.G.; Scudino, S.; Chaubey, A.K.; Löber, L.; Wang, P.; Attar, H.; Schimansky, F.P.; Pyczak, F.; Eckert, J. Processing of Al-12Si-TNM composites by selective laser melting and evaluation of compressive and wear properties. J. Mater. Res. 2016, 31, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Zeren, M.; Karakulak, E.; GÜmÜ, S. Influence of Cu addition on microstructure and hardness of near-eutectic Al-Si-xCu-alloys. Trans. Nonferrous Met. Soc. China 2011, 21, 1698–1702. [Google Scholar] [CrossRef]
- Ahn, S.S.; Pathan, S.; Koo, J.M.; Baeg, C.H.; Jeong, C.U.; Son, H.T.; Kim, Y.H.; Lee, K.H.; Hong, S.J. Enhancement of the Mechanical Properties in Al–Si–Cu–Fe–Mg Alloys with Various Processing Parameters. Materials 2018, 11, 2150. [Google Scholar] [CrossRef] [Green Version]
- Basak, C.B.; Babu, N.H. Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Taylor, J.A. Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys. Procedia Mater. Sci. 2012, 1, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Mathew, J.; Remy, G.; Williams, M.A.; Tang, F.; Srirangam, P. Effect of Fe Intermetallics on Microstructure and Properties of Al-7Si Alloys. JOM 2019, 71, 4362–4369. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.J. The effect of iron in Al-Si casting alloys. In Proceedings of the 35th Australian Foundry Institute National Conference, Adelaide, Australia, 31 October–3 November 2004; pp. 148–157. [Google Scholar]
- Górny, M. Fluidity and Temperature Profile of Ductile Iron in Thin Sections. J. Iron Steel Res. Int. 2012, 19, 52–59. [Google Scholar] [CrossRef]
- Prashanth, K.; Scudino, S.; Chatterjee, R.; Salman, O.; Eckert, J. Additive Manufacturing: Reproducibility of Metallic Parts. Technologies 2017, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Prashanth, K.G.; Scudino, S.; Eckert, J. Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater. 2017, 126, 25–35. [Google Scholar] [CrossRef]
- Rathod, H.J.; Nagaraju, T.; Prashanth, K.G.; Ramamurty, U. Tribological properties of selective laser melted Al–12Si alloy. Tribol. Int. 2019, 137, 94–101. [Google Scholar] [CrossRef]
- Santosh, M.V.; Suresh, K.R.; Kiran Aithal, S. Mechanical Characterization and Microstructure analysis of Al C355.0 by Sand Casting, Die Casting and Centrifugal Casting Techniques. Mater. Today Proc. 2017, 4, 10987–10993. [Google Scholar] [CrossRef]
- Srivastava, N.; Anas, M. An investigative review of squeeze casting: Processing effects & impact on properties. Mater. Today Proc. 2020, 26, 1914–1920. [Google Scholar] [CrossRef]
- Kwok, T.W.J.; Zhai, W.; Peh, W.Y.; Gupta, M.; Fu, M.W.; Chua, B.W. Squeeze Casting for the Production of Metallic Parts and Structures. Encycl. Mater. Met. Alloy. 2022, 87–99. [Google Scholar] [CrossRef]
- Venkatesan, S.; Xavior, M.A. Analysis of Mechanical Properties of Aluminum Alloy Metal Matrix Composite by Squeeze Casting—A Review. Mater. Today Proc. 2018, 5, 11175–11184. [Google Scholar] [CrossRef]
- Weiler, J.P. A review of magnesium die-castings for closure applications. J. Magnes. Alloy. 2019, 7, 297–304. [Google Scholar] [CrossRef]
- Lus, H.M.; Ozer, G.; Guler, K.A. In Situ Composite of (Mg2Si)/Al Fabricated by Squeeze Casting. TMS Annu. Meet. 2012, 1, 775–781. [Google Scholar] [CrossRef]
- Ashiri, R.; Niroumand, B.; Karimzadeh, F. Physical, mechanical and dry sliding wear properties of an Al–Si–Mg–Ni–Cu alloy under different processing conditions. J. Alloys Compd. 2014, 582, 213–222. [Google Scholar] [CrossRef]
- Raji, A.; Khan, R.H. Effects of pouring temperature and squeeze pressure on the properties of AI-8%Si alloy squeeze cast components. In Proceedings of the Institute of Cast Metals Engineers—67th World Foundry Congress, wfc06: Casting the Future; Curran Associates Inc.: Red Hook, NY, USA, 2006; Volume 2, pp. 834–843. [Google Scholar]
- Lin, B.; Zhang, W.W.; Lou, Z.H.; Zhang, D.T.; Li, Y.Y. Comparative study on microstructures and mechanical properties of the heat-treated Al-5.0Cu-0.6Mn-xFe alloys prepared by gravity die casting and squeeze casting. Mater. Des. 2014, 59, 10–18. [Google Scholar] [CrossRef]
- Thirumal Azhagan, M.; Mohan, B.; Rajadurai, A. Optimization of process parameters to enhance the hardness on squeeze cast aluminium alloy AA6061. Int. J. Eng. Technol. 2014, 6, 183–189. [Google Scholar]
- Brayshaw, W.J.; Roy, M.J.; Sun, T.; Akrivos, V.; Sherry, A.H. Iterative mesh-based hardness mapping. Sci. Technol. Weld. Join. 2016, 22, 404–411. [Google Scholar] [CrossRef]
- Pongen, R.; Birru, A.K.; Parthiban, P. Study of microstructure and mechanical properties of A713 aluminium alloy having an addition of grain refiners Al-3.5 Ti-1.5C and Al-3Cobalt. Results Phys. 2019, 13, 102105. [Google Scholar] [CrossRef]
- Zong, Y.Y.; Chen, L.; Zhao, Z.G.; Shan, D.B. Flow Lines, Microstructure, and Mechanical Properties of Flow Control Formed 4032 Aluminum Alloy. Mater. Manuf. Processes 2014, 29, 466–471. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, K. Grain refinement of commercially pure aluminum with addition of Ti and Zr elements based on crystallography orientation. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Nadendla, H.B.; Nowak, M.; Bolzoni, L. Grain Refiner for Al-Si Alloys. Miner. Met. Mater. Ser. 2016, 1009–1012. [Google Scholar] [CrossRef]
- Guan, R.G.; Tie, D. A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects. Acta Metall. Sin. 2017, 30, 409–432. [Google Scholar] [CrossRef]
- Xi, L.; Gu, D.; Guo, S.; Wang, R.; Ding, K.; Prashanth, K.G. Grain Refinement in Laser Manufactured Al-Based Composites with TiB2 Ceramic; Elsevier: Amsterdam, The Netherlands, 2020; Volume 9, pp. 2611–2622. [Google Scholar]
- Singh, A.; Basha, D.A.; Matsushita, Y.; Tsuchiya, K.; Lu, Z.; Nieh, T.G.; Mukai, T. Domain structure and lattice effects in a severely plastically deformed CoCrFeMnNi high entropy alloy. J. Alloys Compd. 2020, 812, 152028. [Google Scholar] [CrossRef]
- Arzaghi, M.; Fundenberger, J.J.; Toth, L.S.; Arruffat, R.; Faure, L.; Beausir, B.; Sauvage, X. Microstructure, texture and mechanical properties of aluminum processed by high-pressure tube twisting. Acta Mater. 2012, 60, 4393–4408. [Google Scholar] [CrossRef]
- Lavernia, E.J.; Han, B.Q.; Schoenung, J.M. Cryomilled nanostructured materials: Processing and properties. Mater. Sci. Eng. A 2008, 493, 207–214. [Google Scholar] [CrossRef]
- Liu, X.; Ma, P.; Ji, Y.D.; Wei, Z.J.; Suo, C.J.; Ji, P.C.; Shi, X.R.; Yu, Z.S.; Prashanth, K.G. Solidification of Al-xCu alloy under high pressures. J. Mater. Res. Technol. 2020, 9, 2983–2991. [Google Scholar] [CrossRef]
- Ma, P.; Wei, Z.J.; Jia, Y.D.; Yu, Z.S.; Prashanth, K.G.; Yang, S.L.; Li, C.G.; Huang, L.X.; Eckert, J. Mechanism of formation of fibrous eutectic Si and thermal conductivity of SiCp/Al-20Si composites solidified under high pressure. J. Alloys Compd. 2017, 709, 329–336. [Google Scholar] [CrossRef]
- Bayoumy, D.; Schliephake, D.; Dietrich, S.; Wu, X.H.; Zhu, Y.M.; Huang, A.J. Intensive processing optimization for achieving strong and ductile Al-Mn-Mg-Sc-Zr alloy produced by selective laser melting. Mater. Des. 2021, 198, 109317. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- ASTM E8/E8M-16. Standard Test Methods for Tension Testing of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM G99-05. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Khan, S.; Ahmad, Z. Comparative analysis for coefficient of friction of LM 25 alloy and LM 25 granite composite at different sliding speeds and applied pressure. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 8, 291–300. [Google Scholar] [CrossRef]
- Feyzullahoǧlu, E.; Şakiroǧlu, N. The tribological behaviours of aluminium-based materials under dry sliding. Ind. Lubr. Tribol. 2011, 63, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Shanmughasundaram, P. Investigation on the Wear Behaviour of Eutectic Al-Si Alloy-Al2O3—Graphite Composites Fabricated Through Squeeze Casting. Mater. Res. 2014, 17, 940–946. [Google Scholar] [CrossRef]
- Amar, M.B.; Souissi, S.; Souissi, N.; Bradai, C. Pressure and die temperature effects on microstructure and mechanical properties of squeeze casting 2017A wrought Al alloy. Int. J. Microstruct. Mater. Prop. 2012, 7, 491–501. [Google Scholar] [CrossRef]
- Wei, Z.; Ma, P.; Wang, H.; Zou, C.; Scudino, S.; Song, K.; Prashanth, K.G.; Jiang, W.; Eckert, J. The thermal expansion behaviour of SiCp/Al-20Si composites solidified under high pressures. Mater. Des. 2015, 65, 387–394. [Google Scholar] [CrossRef]
- Ma, P.; Zou, C.M.; Wang, H.W.; Scudino, S.; Fu, B.G.; Wei, Z.J.; Kühn, U.; Eckert, J. Effects of high pressure and SiC content on microstructure and precipitation kinetics of Al-20Si alloy. J. Alloys Compd. 2014, 586, 639–644. [Google Scholar] [CrossRef]
- Maity, T.; Prashanth, K.G.; Balci, Ö.; Kim, J.T.; Schöberl, T.; Wang, Z.; Eckert, J. Influence of severe straining and strain rate on the evolution of dislocation structures during micro-/nanoindentation in high entropy lamellar eutectics. Int. J. Plast. 2018, 109, 121–136. [Google Scholar] [CrossRef]
- Maity, T.; Prashanth, K.G.; Balçi, Ö.; Wang, Z.; Jia, Y.D.; Eckert, J. Plastic deformation mechanisms in severely strained eutectic high entropy composites explained via strain rate sensitivity and activation volume. Compos. Part B Eng. 2018, 150, 7–13. [Google Scholar] [CrossRef]
- Maity, T.; Balcı, Ö.; Gammer, C.; Ivanov, E.; Eckert, J.; Prashanth, K.G. High pressure torsion induced lowering of Young’s modulus in high strength TNZT alloy for bio-implant applications. J. Mech. Behav. Biomed. Mater. 2020, 108, 103839. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, A.; Konda Gokuldoss, P.; Wang, Z.; Scudino, S.; Mukhopadhyay, N.; Eckert, J. Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles. Technologies 2016, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.; Zhang, L.; Xu, L.; Prashanth, K.; Zhang, N.; Ma, X.; Jia, Y.; Xu, Y.; Jia, Y.; Wang, G. Frictional wear and corrosion behavior of AlCoCrFeNi high-entropy alloy coatings synthesized by atmospheric plasma spraying. Entropy 2020, 22, 740. [Google Scholar] [CrossRef]
- Wang, Z.; Georgarakis, K.; Zhang, W.W.; Prashanth, K.G.; Eckert, J.; Scudino, S. Reciprocating sliding wear behavior of high-strength nanocrystalline Al84Ni7Gd6Co3 alloys. Wear 2017, 382–383, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Attar, H.; Prashanth, K.G.; Chaubey, A.K.; Calin, M.; Zhang, L.C.; Scudino, S.; Eckert, J. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater. Lett. 2015, 142, 38–41. [Google Scholar] [CrossRef]
- Ehtemam-Haghighi, S.; Prashanth, K.G.; Attar, H.; Chaubey, A.K.; Cao, G.H.; Zhang, L.C. Evaluation of mechanical and wear properties of Ti-xNb-7Fe alloys designed for biomedical applications. Mater. Des. 2016, 111, 592–599. [Google Scholar] [CrossRef]
- Ma, P.; Wei, Z.J.; Jia, Y.D.; Zou, C.M.; Scudino, S.; Prashanth, K.G.; Yu, Z.S.; Yang, S.L.; Li, C.G.; Eckert, J. Effect of high pressure solidification on tensile properties and strengthening mechanisms of Al-20Si. J. Alloys Compd. 2016, 688, 88–93. [Google Scholar] [CrossRef]
- Luo, D.; Zhou, Q.; Ye, W.; Ren, Y.; Greiner, C.; He, Y.; Wang, H. Design and Characterization of Self-Lubricating Refractory High Entropy Alloy-Based Multilayered Films. ACS Appl. Mater. Interfaces 2021, 13, 55712–55725. [Google Scholar] [CrossRef]
- Hua, D.; Xia, Q.; Wang, W.; Zhou, Q.; Li, S.; Qian, D.; Shi, J.; Wang, H. Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation. Int. J. Plast. 2021, 142, 102997. [Google Scholar] [CrossRef]
Element/Weight % | Al | Si | Cu | Mg | Fe | Zn | Mn | Ni | Cr |
---|---|---|---|---|---|---|---|---|---|
GDC | 91.02 | 5.41 | 2.97 | 0.373 | 0.135 | 0.019 | 0.01 | 0.005 | 0.001 |
LPSC | 91.09 | 5.41 | 2.91 | 0.372 | 0.135 | 0.016 | 0.01 | 0.006 | 0.001 |
HPSC | 90.99 | 5.41 | 2.98 | 0.391 | 0.142 | 0.017 | 0.01 | 0.005 | 0.001 |
Experiment Number | Casting Route | Applied Load (N) | Temperature (°C) |
---|---|---|---|
1-A1 | GDC | 20 | 200 |
1-A2 | GDC | 60 | 200 |
1-A3 | GDC | 40 | 200 |
1-B1 | LPSC | 20 | 200 |
1-B2 | LPSC | 60 | 200 |
1-B3 | LPSC | 40 | 200 |
1-C1 | HPSC | 20 | 200 |
1-C2 | HPSC | 60 | 200 |
1-C3 | HPSC | 40 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandra, V.S.; Krishna, K.S.V.B.R.; Ravi, M.; Sivaprasad, K.; Dhanasekaran, S.; Prashanth, K.G. Mechanical and Tribological Behavior of Gravity and Squeeze Cast Novel Al-Si Alloy. Metals 2022, 12, 194. https://doi.org/10.3390/met12020194
Chandra VS, Krishna KSVBR, Ravi M, Sivaprasad K, Dhanasekaran S, Prashanth KG. Mechanical and Tribological Behavior of Gravity and Squeeze Cast Novel Al-Si Alloy. Metals. 2022; 12(2):194. https://doi.org/10.3390/met12020194
Chicago/Turabian StyleChandra, Vadlamudi Srinivasa, Koorella S. V. B. R. Krishna, Manickam Ravi, Katakam Sivaprasad, Subramaniam Dhanasekaran, and Konda Gokuldoss Prashanth. 2022. "Mechanical and Tribological Behavior of Gravity and Squeeze Cast Novel Al-Si Alloy" Metals 12, no. 2: 194. https://doi.org/10.3390/met12020194
APA StyleChandra, V. S., Krishna, K. S. V. B. R., Ravi, M., Sivaprasad, K., Dhanasekaran, S., & Prashanth, K. G. (2022). Mechanical and Tribological Behavior of Gravity and Squeeze Cast Novel Al-Si Alloy. Metals, 12(2), 194. https://doi.org/10.3390/met12020194