A Modeling and Neutron Diffraction Study of the High Temperature Properties of Sub-Stoichiometric Yttrium Hydride for Novel Moderator Applications
Abstract
:1. Introduction
2. Methodology
2.1. Density Functional Theory
2.2. Neutron Diffraction
3. Results & Discussion
3.1. Yttrium Metal
3.2. Yttrium Hydride
3.3. Two-Phase Density
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, V.K.; McClure, P.; Kotlyar, D. Selection of a Space Reactor Moderator Using Lessons Learned from SNAP and ANP Programs. In Proceedings of the AIAA Propulsion and Energy Forum, Indianapolis, IN, USA, 19–22 August 2019; p. 4451. [Google Scholar] [CrossRef]
- Stuhr, U.; Schlereth, M.; Steinbinder, D.; Wipf, H. High-Temperature Diffusion of Hydrogen in YHx (1.80 ≤ x ≤ 1.97). Z. Für Phys. Chem. 1989, 164, 929–934. [Google Scholar] [CrossRef]
- Lundin, C.E.; Klodt, D.T. General Electric, Quarterly Progress Report No. TID-6728; XDC-60-9-72; Univ. Denver Research Inst.: Denver, CO, USA, 1959. [Google Scholar]
- Parker, D.S.; Properties of Hydride Yttrium. General Electric, Report No. APEX-558. 1960. Available online: https://www.osti.gov/biblio/4190191 (accessed on 3 December 2021).
- Flotow, H.E.; Osborne, D.W.; Otto, K.J. Heat Capacities and Thermodynamic Functions of YH2 and YD2 from 5 to 350 K and the Hydrogen Vibration Frequencies. Chem. Phys. 1962, 36, 866–872. [Google Scholar] [CrossRef]
- Mueller, W.M.; Blackledge, J.P.; Libowitz, G.G. Metal Hydrides; Academic Press: New York, NY, USA; Elsevier: London, UK, 1968; pp. 441–489. [Google Scholar]
- Vetrano, J.B. Thermodynamic Properties of Lithium Hydride by an Electromotive Force Method1. Nucl. Eng. Des. 1971, 14, 390–412. [Google Scholar] [CrossRef]
- Setoyama, D.; Ito, M.; Matsunaga, J.; Muta, H.; Uno, M.; Yamanaka, S. Mechanical properties of yttrium hydride. J. Alloy. Compd. 2005, 394, 207–210. [Google Scholar] [CrossRef]
- Ito, M.; Matsunaga, J.; Setoyama, D.; Muta, H.; Kurosaki, K.; Uno, M.; Yamanaka, S. Thermal properties of yttrium hydride. J. Nucl. Mater. 2005, 344, 295–297. [Google Scholar] [CrossRef]
- Funston, E.S. Physical Properties of Yttrium Hydride; General Electric, Co.: Cincinnati, OH, USA, 1960. [Google Scholar]
- Beattie, A.G. Acoustic velocity measurements in the metal hydrides, ScH1. 99, YH1. 93, and ErH1. 81. J. Appl. Phys. 1972, 43, 3219–3221. [Google Scholar] [CrossRef]
- Yang, J.W.; Gao, T.; Guo, L.Y. Ab initio study of the structural, mechanical, and dynamical properties of the rare-earth dihydrides XH2 (X = Sc, Y, and La). Phys. B Condens. Matter 2013, 429, 119–126. [Google Scholar] [CrossRef]
- Schultz, P.A.; Snow, C.S. Mechanical Properties of Metal Dihydrides. Model. Simul. Mater. Sci. Eng. 2016, 24, 035005. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Wu, M.; Du, F.; Yang, F.; Shen, J.; Wang, L.; Yan, G.J. Thermodynamic modelling of Y–H and Y–Zr–H system aided by first-principles and its application in bulk hydride moderator fabrication. Nucl. Mater. 2020, 531, 152035. [Google Scholar] [CrossRef]
- Fu, K.; Jiang, X.; Guo, Y.; Li, S.; Zheng, J.; Tian, W.; Li, X. Experimental investigation and thermodynamic assessment of the yttrium-hydrogen binary system. Prog. Nat. Sci. Mater. Int. 2018, 28, 332–336. [Google Scholar] [CrossRef]
- Trofimov, A.A.; Hu, X.; Wang, H.; Yang, Y.; Terrani, K.A. Thermophysical properties and reversible phase transitions in yttrium hydride. J. Nucl. Mater. 2020, 542, 152569. [Google Scholar] [CrossRef]
- Shivprasad, A.P.; Frazer, D.M.; Mehta, V.K.; Cooper, M.W.D.; Saleh, T.A.; White, J.T.; Wermer, J.R.; Luther, E.P.; Rao, D.V. Elastic moduli of high-density, sintered monoliths of yttrium dihydride. J. Alloy. Compd. 2020, 826, 153955. [Google Scholar] [CrossRef]
- Shivprasad, A.P.; Vogel, S.C.; Mehta, V.K.; Cooper, M.W.D.; Saleh, T.A.; White, J.T.; Wermer, J.R.; Luther, E.P.; Trellue, H.R. Thermophysical properties of high-density, sintered monoliths of yttrium dihydride in the range 373–773 K. J. Alloys Compd. 2020, 850, 156303. [Google Scholar] [CrossRef]
- Mehta, V.K.; Vogel, S.C.; Shivprasad, A.P.; Luther, E.P.; Andersson, D.A.; Rao, D.V.; Kotlyar, D.; Clausen, B.; Cooper, M.W. A density functional theory and neutron diffraction study of the ambient condition properties of sub-stoichiometric yttrium hydride. J. Nucl. Mater. 2021, 547, 152837. [Google Scholar] [CrossRef]
- Hu, X.; Wang, H.; Linton, K.; Le Coq, A.; Terrani, K. Handbook on the Material Properties of Yttrium Hydride for High Temperature Moderator Applications; No. ORNL/TM-2021/2074; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2021. [Google Scholar]
- Mehta, V.K.; Cooper, M.W.; Wilkerson, R.B.; Kotlyar, D.; Rao, D.V.; Vogel, S.C. Evaluation of Yttrium Hydride (δ-YH2-x) Thermal Neutron Scattering Laws and Thermophysical Properties. Nucl. Sci. Eng. 2021, 195, 563–577. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. J. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616. [Google Scholar] [CrossRef] [Green Version]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wenk, H.R.; Lutterotti, L.; Vogel, S. Nuclear Instruments and Methods in Physics Research Section A: Accelerators. Spectrometers Detect. Assoc. Equip. 2003, 515, 575–588. [Google Scholar] [CrossRef]
- Vogel, S.C.; Hartig, C.; Lutterotti, L.; Von Dreele, R.B.; Wenk, H.R.; Williams, D.J. Texture measurements using the new neutron diffractometer HIPPO and their analysis using the Rietveld method. Powder Diffr. 2004, 19, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Lisowski, P.W.; Schoenberg, K.F. The Los Alamos neutron science center. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detect. Assoc. Equip. 2006, 562, 910–914. [Google Scholar] [CrossRef]
- Takajo, S.; Vogel, S.C. Determination of pole figure coverage for texture measurements with neutron time-of-flight diffractometers. J. Appl. Crystallogr. 2018, 51, 895. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR 86-748; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004. [Google Scholar]
- Vogel, S.C. gsaslanguage: A GSAS script language for automated Rietveld refinements of diffraction data. J. Appl. Crystallogr. 2011, 44, 873. [Google Scholar] [CrossRef]
- Khatamian, D.; Manchester, F.D. The H− Y (hydrogen-yttrium) system. Bull. Alloy. Phase Diagr. 1988, 9, 252–260. [Google Scholar] [CrossRef]
- Spedding, F.H.; Daane, A.H.; Hermann, K.W. The crystal structures and lattice parameters of high-purity scandium, yttrium and the rare earth metals. Acta Crystallogr. 1956, 9, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Jennings, L.D.; Miller, R.E.; Spedding, F.H. Lattice heat capacity of the rare earths. Heat capacities of yttrium and lutetium from 15–350 k. J. Chem. Phys. 1960, 33, 1849–1852. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, V.K.; Vogel, S.C.; Kotlyar, D.; Cooper, M.W.D. A Modeling and Neutron Diffraction Study of the High Temperature Properties of Sub-Stoichiometric Yttrium Hydride for Novel Moderator Applications. Metals 2022, 12, 199. https://doi.org/10.3390/met12020199
Mehta VK, Vogel SC, Kotlyar D, Cooper MWD. A Modeling and Neutron Diffraction Study of the High Temperature Properties of Sub-Stoichiometric Yttrium Hydride for Novel Moderator Applications. Metals. 2022; 12(2):199. https://doi.org/10.3390/met12020199
Chicago/Turabian StyleMehta, Vedant K., Sven C. Vogel, Dan Kotlyar, and Michael W. D. Cooper. 2022. "A Modeling and Neutron Diffraction Study of the High Temperature Properties of Sub-Stoichiometric Yttrium Hydride for Novel Moderator Applications" Metals 12, no. 2: 199. https://doi.org/10.3390/met12020199
APA StyleMehta, V. K., Vogel, S. C., Kotlyar, D., & Cooper, M. W. D. (2022). A Modeling and Neutron Diffraction Study of the High Temperature Properties of Sub-Stoichiometric Yttrium Hydride for Novel Moderator Applications. Metals, 12(2), 199. https://doi.org/10.3390/met12020199