Effects of Zn Addition on the Microstructure and Mechanical Properties of As-Extruded Mg-2Al-0.5Ca Alloy
Abstract
:1. Introduction
2. Materials and Experimental Procedure
3. Results
3.1. Microstructures of As-Cast Alloy
Position | Mg | Ca | Al | Possible Phases |
---|---|---|---|---|
A | 76.12 | 7.72 | 16.16 | Al2Ca |
B | 66.53 | 9.55 | 23.92 | Al2Ca |
C | 70.03 | 9.58 | 20.38 | Al2Ca |
D | 49.55 | 15.49 | 34.96 | Al2Ca |
3.2. Microstructures of the As-Extruded Alloy
Position | Mg | Ca | Al | Possible Phases |
---|---|---|---|---|
A | 75.5 | 8.29 | 16.21 | Al2Ca |
B | 41.7 | 16.58 | 41.72 | Al2Ca |
C | 61.33 | 9.7 | 28.96 | Al2Ca |
D | 50.74 | 12.86 | 36.4 | Al2Ca |
3.3. Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sasaki, T.T.; Bian, M.Z.; Li, Z.H.; Hono, K. Toward Development of Strong and Formable Magnesium Alloy Sheets with Bake-Hardenability. JOM 2021, 73, 1471–1483. [Google Scholar] [CrossRef]
- Zhao, L.-Q.; Wang, C.; Chen, J.-C.; Ning, H.; Yang, Z.-Z.; Xu, J.; Wang, H.-Y. Development of weak-textured and high-performance Mg–Zn–Ca alloy sheets based on Zn content optimization. J Alloy. Compd. 2020, 849, 156640. [Google Scholar] [CrossRef]
- Papenberg, N.P.; Gneiger, S.; Uggowitzer, P.J.; Pogatscher, S. Lean Wrought Magnesium Alloys. Materials 2021, 14, 4282. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. 2020, 8, 1–41. [Google Scholar] [CrossRef]
- You, S.; Huang, Y.; Kainer, K.U.; Hort, N. Recent research and developments on wrought magnesium alloys. J. Magnes. Alloy. 2017, 5, 239–253. [Google Scholar] [CrossRef]
- Salandari-Rabori, A.; Zarei-Hanzaki, A.; Abedi, H.R.; Lecomte, J.S.; Khatami-Hamedani, H. Micro and macro texture evolution during multiaxial forging of a WE43 magnesium alloy. J Alloy. Compd. 2018, 739, 249–259. [Google Scholar] [CrossRef]
- Jiang, M.G.; Xu, C.; Nakata, T.; Yan, H.; Chen, R.S.; Kamado, S. Rare earth texture and improved ductility in a Mg-Zn-Gd alloy after high-speed extrusion. Mater. Sci. Eng. A 2016, 667, 233–239. [Google Scholar] [CrossRef]
- Bugnet, M.; Kula, A.; Niewczas, M.; Botton, G.A. Segregation and clustering of solutes at grain boundaries in Mg–rare earth solid solutions. Acta Mater. 2014, 79, 66–73. [Google Scholar] [CrossRef]
- Basu, I.; Al-Samman, T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater. 2014, 67, 116–133. [Google Scholar] [CrossRef]
- Stanford, N. Micro-alloying Mg with Y, Ce, Gd and La for texture modification—A comparative study. Mater. Sci. Eng. A 2010, 527, 2669–2677. [Google Scholar] [CrossRef]
- Illkova, K.; Dobroň, P.; Chmelík, F.; Kainer, K.U.; Balík, J.; Yi, S.; Letzig, D.; Bohlen, J. Effect of aluminium and calcium on the microstructure, texture, plastic deformation and related acoustic emission of extruded magnesium–manganese alloys. J. Alloy. Compd. 2014, 617, 253–264. [Google Scholar] [CrossRef]
- Stanford, N. The effect of calcium on the texture, microstructure and mechanical properties of extruded Mg–Mn–Ca alloys. Mater. Sci. Eng. A 2010, 528, 314–322. [Google Scholar] [CrossRef]
- Bohlen, J.; Wendt, J.; Nienaber, M.; Kainer, K.U.; Stutz, L.; Letzig, D. Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys. Mater. Charact. 2015, 101, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Nakata, T.; Xu, C.; Ajima, R.; Shimizu, K.; Hanaki, S.; Sasaki, T.T.; Ma, L.; Hono, K.; Kamado, S. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys. Acta Mater. 2017, 130, 261–270. [Google Scholar] [CrossRef]
- Watanabe, H.; Yamaguchi, M.; Takigawa, Y.; Higashi, K. Mechanical properties of Mg–Al–Ca alloy processed by hot extrusion. Mater. Sci. Eng. A 2007, 454, 384–388. [Google Scholar] [CrossRef]
- Xu, S.W.; Oh-ishi, K.; Kamado, S.; Uchida, F.; Homma, T.; Hono, K. High-strength extruded Mg–Al–Ca–Mn alloy. Scr. Mater. 2011, 65, 269–272. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, N.E.; Chang, D.Y.; Kim, B.K. Effect of calcium content on the microstructural evolution and mechanical properties of wrought Mg-3Al-1Zn alloy. Mater. Sci. Eng. A 2009, 525, 18–29. [Google Scholar] [CrossRef]
- Huang, X.; Chino, Y.; Yuasa, M.; Ueda, H.; Inoue, M.; Kido, F.; Matsumoto, T. Microstructure and mechanical properties of AZX912 magnesium alloy extruded at different temperatures. Mater. Sci. Eng. A 2017, 679, 162–171. [Google Scholar] [CrossRef]
- SandloBes, S.; Friák, M.; Korte-Kerzel, S.; Pei, Z.; Neugebauer, J.; Raabe, D. A rare-earth free magnesium alloy with improved intrinsic ductility. Sci. Rep. 2017, 7, 10458. [Google Scholar] [CrossRef]
- Masood Chaudry, U.; Hoo Kim, T.; Duck Park, S.; Sik Kim, Y.; Hamad, K.; Kim, J.-G. On the High Formability of AZ31-0.5Ca Magnesium Alloy. Materials 2018, 11, 2201. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Zhang, P.; Cheng, G.; Kamado, S. Effect of calcium addition on microstructure and texture modification of Mg rolled sheets. Trans. Nonferrous Met. Soc. China 2015, 25, 2875–2883. [Google Scholar] [CrossRef]
- Li, Z.H.; Sasaki, T.T.; Bian, M.Z.; Nakata, T.; Yoshida, Y.; Kawabe, N.; Kamado, S.; Hono, K. Effects of Zn Additions on the Room Temperature Formability and Strength in Mg–1.2Al–0.5Ca–0.4Mn Alloy Sheets; Springer International Publishing: Cham, Germany, 2020; pp. 105–111. [Google Scholar]
- Golrang, M.; Mobasheri, M.; Mirzadeh, H.; Emamy, M. Effect of Zn addition on the microstructure and mechanical properties of Mg-0.5Ca-0.5RE magnesium alloy. J Alloy. Compd. 2020, 815, 152380. [Google Scholar] [CrossRef]
- Chai, Y.; Jiang, B.; Song, J.; Liu, B.; Huang, G.; Zhang, D.; Pan, F. Effects of Zn and Ca addition on microstructure and mechanical properties of as-extruded Mg-1.0Sn alloy sheet. Mater. Sci. Eng. A 2019, 746, 82–93. [Google Scholar] [CrossRef]
- Wang, F.; Hu, T.; Zhang, Y.; Xiao, W.; Ma, C. Effects of Al and Zn contents on the microstructure and mechanical properties of Mg-Al-Zn-Ca magnesium alloys. Mater. Sci. Eng. A 2017, 704, 57–65. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, X.; Pan, F.; Wang, J.; Gao, S.; Tu, T.; Liu, C.; Yao, J.; Atrens, A. Strain hardening of as-extruded Mg-xZn (x = 1, 2, 3 and 4 wt.%) alloys. J Mater. Sci. Technol. 2019, 35, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Nakata, T.; Xu, C.; Suzawa, K.; Yoshida, K.; Kawabe, N.; Kamado, S. Enhancing mechanical properties of rolled Mg-Al-Ca-Mn alloy sheet by Zn addition. Mater. Sci. Eng. A 2018, 737, 223–229. [Google Scholar] [CrossRef]
- Liu, L. 2-Welding Metallurgy of Magnesium Alloys; Woodhead Publishing: Sawston, UK, 2010; pp. 9–15. [Google Scholar]
- Zhou, X.J.; Xiong, W.Y.; Zeng, G.; Xiao, H.C.; Zhang, J.; Lu, X.Z.; Chen, X.M. Combined effects of LPSO orientation and alpha-Mg texture on tensile anisotropy of an extruded Mg-Gd-Y-Zn-Zr alloy. Mater. Sci. Eng. A 2021, 805, 140596. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, B.; Wang, Q.; Yang, H.; Yuan, M.; Huang, G.; Zhang, D.; Pan, F. Influence of Ce content on the microstructures and tensile properties of Mg-1Gd-0.5Zn alloys. Mater. Sci. Eng. A 2021, 823, 141675. [Google Scholar] [CrossRef]
- Yuan, M.; He, C.; Zhao, J.; Yang, H.; Song, Y.; Lei, B.; Qian, X.; Dong, Z.; Li, Q.; Jiang, B.; et al. Microstructure evolution and mechanical properties of the Mg-Sm-Gd-Zn-Zr alloy during extrusion. J. Mater. Res. Technol. 2021, 15, 2518–2528. [Google Scholar] [CrossRef]
- Yu, Z.J.; Xu, X.; Mansoor, A.; Du, B.T.; Shi, K.; Liu, K.; Li, S.B.; Du, W.B. Precipitate characteristics and their effects on the mechanical properties of as-extruded Mg-Gd-Li-Y-Zn alloy. J. Mater. Sci. Technol. 2021, 88, 21–35. [Google Scholar] [CrossRef]
- Bian, M.; Huang, X.; Chino, Y. Substantial improvement in cold formability of concentrated Mg–Al–Zn–Ca alloy sheets by high temperature final rolling. Acta Mater. 2021, 220, 117328. [Google Scholar] [CrossRef]
- Pei, R.; Zou, Y.; Wei, D.; Al-Samman, T. Grain boundary co-segregation in magnesium alloys with multiple substitutional elements. Acta Mater. 2021, 208, 116749. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Zhu, Y.M.; Xu, S.W.; Bian, M.Z.; Davies, C.H.J.; Birbilis, N.; Nie, J.F. Texture evolution during static recrystallization of cold-rolled magnesium alloys. Acta Mater. 2016, 105, 479–494. [Google Scholar] [CrossRef]
- Guan, D.; Liu, X.; Gao, J.; Ma, L.; Wynne, B.P.; Rainforth, W.M. Exploring the mechanism of “Rare Earth” texture evolution in a lean Mg–Zn–Ca alloy. Sci. Rep. 2019, 9, 7152. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Rainforth, W.M.; Le, M.; Wynne, B.; Gao, J. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 2017, 126, 132–144. [Google Scholar] [CrossRef]
- Wang, S.; Ma, J.; Yang, J.; Zhang, W.; Sun, Y.; Pan, J.; Wang, H.; Chen, W. Improving the ductility of Mg-2.5Nd-0.5Zn-0.5Zr alloy by multi-pass hot rolling. J. Mater. Res. Technol. 2021, 14, 2124–2130. [Google Scholar] [CrossRef]
- Wu, J.; Jin, L.; Dong, J.; Wang, F.; Dong, S. The texture and its optimization in magnesium alloy. J. Mater. Sci. Technol. 2020, 42, 175–189. [Google Scholar] [CrossRef]
- Ding, H.; Shi, X.; Wang, Y.; Cheng, G.; Kamado, S. Texture weakening and ductility variation of Mg-2Zn alloy with CA or RE addition. Mater. Sci. Eng. A 2015, 645, 196–204. [Google Scholar] [CrossRef]
- Ogawa, Y.; Ando, D.; Sutou, Y.; Koike, J. Texture randomization of hexagonal close packed phase through hexagonal close packed/body centered cubic phase transformation in Mg-Sc alloy. Scripta Mater. 2017, 128, 27–31. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Q.; Guan, K.; Li, B.; Wang, N.; Qin, P.; Jiang, B.; Sun, C.; Qin, X.; Tian, Z.; et al. A high-strength low-rare-earth-alloyed magnesium alloy via traditional hot-extrusion. J. Alloy. Compd. 2019, 810, 151967. [Google Scholar] [CrossRef]
- Yu, H.; Xin, Y.; Wang, M.; Liu, Q. Hall-Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 2018, 34, 248–256. [Google Scholar] [CrossRef]
- Wang, H.Y.; Rong, J.; Liu, G.J.; Zha, M.; Wang, C.; Luo, D.; Jiang, Q.C. Effects of Zn on the microstructure and tensile properties of as-extruded Mg-8Al-2Sn alloy. Mater. Sci. Eng. A 2017, 698, 249–255. [Google Scholar] [CrossRef]
- Gypen, L.A.; Deruyttere, A. Multi-component intrinsic solid solution softening and hardening. J. Less-Common Met. 1977, 56, 91–101. [Google Scholar] [CrossRef]
- Toda-Caraballo, I.; Galindo-Nava, E.I.; Rivera-Díaz-del-Castillo, P.E.J. Understanding the factors influencing yield strength on Mg alloys. Acta Mater. 2014, 75, 287–296. [Google Scholar] [CrossRef]
- Yang, Q.; Jiang, B.; Tian, Y.; Liu, W.; Pan, F. A tilted weak texture processed by an asymmetric extrusion for magnesium alloy sheets. Mater. Lett. 2013, 100, 29–31. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.X.; Pan, F.; Li, Z.; Luo, X. Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys. Mater. Sci. Eng. A 2007, 456, 43–51. [Google Scholar] [CrossRef]
Nominal Composition | Measured Composition (wt.%) | |||
---|---|---|---|---|
Al | Ca | Zn | Mg | |
Alloy 1: Mg-2Al-0.5Ca | 2.29 | 0.64 | - | Bal. |
Alloy 2: Mg-2Al-0.5Ca-0.3Zn | 2.21 | 0.51 | 0.28 | Bal. |
Alloy 3: Mg-2Al-0.5Ca-0.6Zn | 2.35 | 0.49 | 0.56 | Bal. |
Alloy 4: Mg-2Al-0.5Ca-0.9Zn | 2.22 | 0.53 | 0.91 | Bal. |
Alloy | ED | 45° | TD | ||||||
---|---|---|---|---|---|---|---|---|---|
σ0.2 | σb | ε | σ0.2 | σb | ε | σ0.2 | σb | ε | |
Alloy 1 | 110 ± 3 | 236 ± 5 | 20.1 ± 0.8 | 139 ± 2 | 271 ± 3 | 21.7 ± 0.6 | 119 ± 2 | 248 ± 2 | 16.1 ± 0.4 |
Alloy 2 | 142 ± 2 | 297 ± 4 | 23.3 ± 0.6 | 140 ± 2 | 285 ± 4 | 23.1 ± 0.5 | 142 ± 3 | 245 ± 2 | 13.9 ± 0.8 |
Alloy 3 | 145 ± 2 | 317 ± 4 | 30.0 ± 0.4 | 148 ± 2 | 299 ± 3 | 25.0 ± 0.3 | 148 ± 2 | 269 ± 4 | 16.8 ± 0.6 |
Alloy 4 | 149 ± 2 | 327 ± 3 | 28.6 ± 0.5 | 142 ± 2 | 297 ± 2 | 24.1 ± 0.4 | 152 ± 2 | 258 ± 3 | 13.6 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; He, C.; Song, Y.; Lei, B.; Qian, X.; Dong, Z.; Zhao, J.; Yang, H.; Chai, Y.; Jiang, B.; et al. Effects of Zn Addition on the Microstructure and Mechanical Properties of As-Extruded Mg-2Al-0.5Ca Alloy. Metals 2022, 12, 221. https://doi.org/10.3390/met12020221
Yuan M, He C, Song Y, Lei B, Qian X, Dong Z, Zhao J, Yang H, Chai Y, Jiang B, et al. Effects of Zn Addition on the Microstructure and Mechanical Properties of As-Extruded Mg-2Al-0.5Ca Alloy. Metals. 2022; 12(2):221. https://doi.org/10.3390/met12020221
Chicago/Turabian StyleYuan, Ming, Chao He, Yan Song, Bin Lei, Xiaoying Qian, Zhihua Dong, Jun Zhao, Huabao Yang, Yanfu Chai, Bin Jiang, and et al. 2022. "Effects of Zn Addition on the Microstructure and Mechanical Properties of As-Extruded Mg-2Al-0.5Ca Alloy" Metals 12, no. 2: 221. https://doi.org/10.3390/met12020221
APA StyleYuan, M., He, C., Song, Y., Lei, B., Qian, X., Dong, Z., Zhao, J., Yang, H., Chai, Y., Jiang, B., & Pan, F. (2022). Effects of Zn Addition on the Microstructure and Mechanical Properties of As-Extruded Mg-2Al-0.5Ca Alloy. Metals, 12(2), 221. https://doi.org/10.3390/met12020221