A Model for Dose Dependence of the Void Swelling in Electron-Irradiated Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zinkle, S.J. Radiation-Induced Effects on Microstructure. Compr. Nucl. Mater. 2020, 1, 65–98. [Google Scholar] [CrossRef] [Green Version]
- Mattas, R.; Garner, F.; Grossbeck, M.; Maziasz, P.; Odette, G.; Stoller, R. The impact of swelling on fusion reactor first wall lifetime. J. Nucl. Mater. 1984, 122, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Cawthorne, C.; Fulton, E.J. Voids in Irradiated Stainless Steel. Nature 1967, 216, 575–576. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science: Metals and Alloys; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Was, G.S. Irradiation-Induced Voids and Bubbles. In Fundamentals of Radiation Materials Science; Springer: Singapore, 2017; pp. 379–484. [Google Scholar]
- Garner, F.A.; Thomas, L.E. Production of Voids in Stainless Steel by High-Voltage Electrons; In Proceedings of the ASTM Special Technical Publication; ASTM International: Conshohocken, PA, USA, 1972; pp. 303–323. [Google Scholar]
- Han, X.; Tanaka, T.; Kojima, N.; Ohshita, Y.; Yamaguchi, M.; Sato, S. Growth orientation dependent photoluminescence of GaAsN alloys. Appl. Phys. Lett. 2012, 100, 32108. [Google Scholar] [CrossRef]
- Bufford, D.C.; Abdeljawad, F.F.; Foiles, S.M.; Hattar, K. Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling. Appl. Phys. Lett. 2015, 107, 191901. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Yasuda, H. Fluctuation of long-range order in Co-Pt alloy nanoparticles revealed by time-resolved electron microscopy. Appl. Phys. Lett. 2017, 110, 153101. [Google Scholar] [CrossRef]
- Knez, D.; Schnedlitz, M.; Lasserus, M.; Hauser, A.W.; Ernst, W.E.; Hofer, F.; Kothleitner, G. The impact of swift electrons on the segregation of Ni-Au nanoalloys. Appl. Phys. Lett. 2019, 115, 123103. [Google Scholar] [CrossRef]
- Pavelescu, E.-M.; Ligor, O.; Occena, J.; Ticoş, C.; Matei, A.; Gavrilă, R.L.; Yamane, K.; Wakahara, A.; Goldman, R.S. Influence of electron irradiation and rapid thermal annealing on photoluminescence from GaAsNBi alloys. Appl. Phys. Lett. 2020, 117, 142106. [Google Scholar] [CrossRef]
- Was, G.S. Emulating Neutron Irradiation Effects with Ions. Fundam. Radiat. Mater. Sci. 2017, 631–665. [Google Scholar] [CrossRef]
- Was, G. Challenges to the use of ion irradiation for emulating reactor irradiation. J. Mater. Res. 2015, 30, 1158–1182. [Google Scholar] [CrossRef]
- Hishinuma, A.; Katano, Y.; Shiraishi, K. Dose and Temperature Dependence of Void Swelling in Electron Irradiated Stainless Steel. J. Nucl. Sci. Technol. 1977, 14, 723–730. [Google Scholar] [CrossRef]
- Norgett, M.; Robinson, M.; Torrens, I. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 1975, 33, 50–54. [Google Scholar] [CrossRef]
- Was, G.S. Radiation-Enhanced Diffusion and Defect Reaction Rate Theory. Fundam. Radiat. Mater. Sci. 2017, 16, 207–252. [Google Scholar] [CrossRef]
- Krsjak, V.; Shen, T.; Degmova, J.; Sojak, S.; Korpas, E.; Noga, P.; Egger, W.; Li, B.; Slugen, V.; Garner, F.A. On the helium bubble swelling in nano-oxide dispersion-strengthened steels. J. Mater. Sci. Technol. 2022, 105, 172–181. [Google Scholar] [CrossRef]
- Garner, F.A.; Toloczko, M.B.; Sencer, B.H. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J. Nucl. Mater. 2000, 276, 123–142. [Google Scholar] [CrossRef]
- Garner, F.A. Radiation Damage in Austenitic Steels. In Comprehensive Nuclear Materials; Konings, R.J.M., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4, pp. 33–95. ISBN 9780080560335. [Google Scholar]
- Norris, D. The use of the high voltage electron microscope to simulate fast neutron-induced void swelling in metals. J. Nucl. Mater. 1971, 40, 66–76. [Google Scholar] [CrossRef]
- Makin, M.; Walters, G.; Foreman, A. The void swelling behaviour of electron irradiated type 316 austenitic steel. J. Nucl. Mater. 1980, 95, 155–170. [Google Scholar] [CrossRef]
- Gilbon, D.; Rivera, C. Behaviour of different ferritic steels under ion, electron and fast neutron irradiation. J. Nucl. Mater. 1988, 155–157, 1268–1273. [Google Scholar] [CrossRef]
- Singh, B.; Horsewell, A.; Gelles, D.; Garner, F. Void swelling in copper and copper alloys irradiated with fission neutrons. J. Nucl. Mater. 1992, 191–194, 1172–1176. [Google Scholar] [CrossRef]
- Li, Y.; Hu, S.; Sun, X.; Gao, F.; Henager, C.H.; Khaleel, M. Phase-field modeling of void evolution and swelling in materials under irradiation. Sci. China Phys. Mech. Astron. 2011, 54, 856–865. [Google Scholar] [CrossRef]
- Chang, K.; Lee, G.-G.; Kwon, J. A phase-field modeling of void swelling in the Austenitic stainless steel. Radiat. Eff. Defects Solids 2016, 171, 242–251. [Google Scholar] [CrossRef]
- Biner, S.B. Solving Phase-Field Models with Finite Difference Algorithms. In Programming Phase-Field Modeling; Springer International Publishing: Singapore, 2017; pp. 17–97. [Google Scholar]
- Okita, T.; Sato, T.; Sekimura, N.; Iwai, T.; Garner, F. The synergistic influence of temperature and displacement rate on microstructural evolution of ion-irradiated Fe–15Cr–16Ni model austenitic alloy. J. Nucl. Mater. 2007, 367–370, 930–934. [Google Scholar] [CrossRef]
- Okita, T.; Wolfer, W. A critical test of the classical rate theory for void swelling. J. Nucl. Mater. 2004, 327, 130–139. [Google Scholar] [CrossRef]
- Wolfer, W. Advances in void swelling and helium bubble physics. J. Nucl. Mater. 1984, 122, 367–378. [Google Scholar] [CrossRef]
- Russell, K. Nucleation of voids in irradiated metals. Acta Met. 1971, 19, 753–758. [Google Scholar] [CrossRef]
- Fu, C.C.; Willaime, F.; Ordejón, P. Stability and mobility of mono-and Di-interstitials in α-Fe. Phys. Rev. Lett. 2004, 92, 175503. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, N.; Sakuraya, S.; Tanimoto, J.; Ohnuki, S. Effect of impurities on vacancy migration energy in Fe-based alloys. J. Nucl. Mater. 2014, 445, 224–226. [Google Scholar] [CrossRef]
- Kiritani, M.; Yoshida, N.; Takata, H.; Maehara, Y. Growth of Interstitial Type Dislocation Loops and Vacancy Mobility in Electron Irradiated Metals. J. Phys. Soc. Jpn. 1975, 38, 1677–1686. [Google Scholar] [CrossRef]
- Liu, X.; Miao, Y.; Li, M.; Kirk, M.A.; Maloy, S.A.; Stubbins, J.F. Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91. J. Nucl. Mater. 2017, 490, 305–316. [Google Scholar] [CrossRef]
- Wolfer, W.G. Fundamental Properties of Defects in Metals. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–49. [Google Scholar]
- Getto, E.; Sun, K.; Monterrosa, A.; Jiao, Z.; Hackett, M.; Was, G. Void swelling and microstructure evolution at very high damage level in self-ion irradiated ferritic-martensitic steels. J. Nucl. Mater. 2016, 480, 159–176. [Google Scholar] [CrossRef]
Materials | α | c | r-Square |
---|---|---|---|
316L, 530 °C | 0.11008 | 1.16224 | 0.99926 |
EN58B, 500 °C | 0.1502 | 0.43211 | 0.99417 |
316SS, 575 °C | 0.03737 | 0.00001 | 0.9872 |
EM10, 450 °C | 0.00908 | 0.02249 | 0.97391 |
EM12, 450 °C | 0.01812 | 0.00001 | 0.99472 |
Cu, 450 °C | 0.09994 | 0.00001 | 0.97601 |
Cu-Ni alloy, 450 °C | 0.00185 | 0.03309 | 0.99909 |
Temperature | α | c |
---|---|---|
500 °C | 0.01624 | 1.00 × 10−3 |
550 °C | 0.02114 | 0.07978 |
570 °C | 0.03273 | 0.62573 |
600 °C | 0.03379 | 1.61698 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, W.; Zhao, S.; Wang, C.; Liu, H.; Su, Y.; Huang, J.; Gao, Z.; Xue, J.; Wang, Y. A Model for Dose Dependence of the Void Swelling in Electron-Irradiated Alloys. Metals 2022, 12, 244. https://doi.org/10.3390/met12020244
Ge W, Zhao S, Wang C, Liu H, Su Y, Huang J, Gao Z, Xue J, Wang Y. A Model for Dose Dependence of the Void Swelling in Electron-Irradiated Alloys. Metals. 2022; 12(2):244. https://doi.org/10.3390/met12020244
Chicago/Turabian StyleGe, Wei, Shijun Zhao, Chenxu Wang, Haocheng Liu, Yue Su, Jia Huang, Zhiying Gao, Jianming Xue, and Yugang Wang. 2022. "A Model for Dose Dependence of the Void Swelling in Electron-Irradiated Alloys" Metals 12, no. 2: 244. https://doi.org/10.3390/met12020244
APA StyleGe, W., Zhao, S., Wang, C., Liu, H., Su, Y., Huang, J., Gao, Z., Xue, J., & Wang, Y. (2022). A Model for Dose Dependence of the Void Swelling in Electron-Irradiated Alloys. Metals, 12(2), 244. https://doi.org/10.3390/met12020244