Correlation between Flotation and Rheology of Fine Particle Suspensions
Abstract
:1. Introduction
2. Flotation
2.1. Fine Particle Flotation
2.2. Challenges in Fine Particle Flotation
3. Rheology
3.1. Rheology of Fine Particle Suspensions
3.2. Zeta Potential of Fine/Colloidal Particles
4. Correlation between Rheology and Flotation
Researcher | Type of Modeling Approach | Aims and Challenges | Findings and Limitations |
---|---|---|---|
Schubert and Bischofberger, 1978 [187] | N/A |
|
|
Schubert and Bischofberger, 1998 [188] | N/A |
|
|
Schubert, 1999 [228] | (8) |
|
|
Pyke et al., 2003 [104] | (9) |
|
|
(10) | |||
(11) | |||
(12) | |||
Shabalala et al., 2011 [149] | N/A |
|
|
Genc et al., 2012 [217] | N/A |
|
|
Patra et al., 2012 [150] |
|
| |
Xu et al., 2012 [225] | (13) |
|
|
Forbes et al., 2014 [57] | (14) |
|
|
Cruz et al., 2015 [230] | N/A |
|
|
Wang et al., 2016 [224] | N/A |
|
|
Zhang and Peng, 2015 [226] | (15) |
|
|
(16) | |||
Zhang et al., 2015 [223] | N/A |
|
|
Farrokhpay et al., 2016 [192] | N/A |
|
|
Wang et al., 2015 [221] | N/A |
|
|
Basnayaka et al., 2017 [227] | (17) |
|
|
Chen et al., 2017 [193] | N/A |
|
|
Farrokhpay et al., 2018 [222] | N/A |
|
|
Liu et al., 2018 [229] | N/A |
|
|
Li et al., 2020 [220] | N/A |
|
|
5. Summary and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Hamaker constant | |
Bond number | |
Bubble diameter | |
Rate of removal of particles by bubbles | |
Particle diameter | |
Elementary charge | |
Attachment efficiency | |
Collision efficiency | |
Sutherland collision efficiency | |
Entrainment factors for non-floatable minerals | |
Entrainment factors for floatable minerals | |
Degree of entrainment | |
Stability efficiency | |
Fraction of chalcopyrite remaining unrecovered after time t | |
Electrical double layer force | |
Intercept on the mineral recovery axis | |
Van der Waals force | |
Gas flowrate | |
Inter-particle separation distance | |
Flotation rate constant | |
Boltzmann constant | |
Rate coefficient of the fast floating chalcopyrite | |
Maximum flotation rate constant | |
Rate coefficient of the slow floating chalcopyrite | |
Mass of gangue minerals | |
Mass of water in concentrate | |
Mass of water in tailings | |
Number concentration of ions | |
Bubble number concentration | |
Particle number concentration | |
Number density of particles | |
Overall recovery of mineral (%) | |
Recovery by entrainment | |
Recoveries of non-floatable particles | |
Recoveries of floatable particles | |
Recovery of water in the cell (%) | |
Flotation recovery at an infinite time | |
Time | |
Absolute temperature | |
Bubble velocity | |
Flotation cell volume | |
Weight of recovered water in given time | |
Ionic valence | |
Number of collisions per unit volume and time | |
Dielectric constant | |
Turbulent dissipation energy | |
Permittivity of free space | |
Debye–Huckel reciprocal length | |
Fraction of non-floating chalcopyrite | |
Particle density | |
Fluid density | |
Kinematic viscosity | |
Root-mean-square values of the turbulent velocity fluctuations of the bubble | |
Root-mean-square values of the turbulent velocity fluctuations of the particles | |
Shear yield stress | |
Maximum shear yield stress | |
Fraction of fast-floating chalcopyrite | |
Adhesion angle | |
Maximum possible collision angle of particle on bubble (angle of tangency) | |
Zeta potential |
References
- Otsuki, A. Use of Microorganisms for Complex ORE Beneficiation: Bioflotation as an Example. In Encyclopedia of Biocolloid and Biointerface Science 2V Set; Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 108–117. [Google Scholar]
- Otsuki, A.; Chen, Y.; Zhao, Y. Characterisation and Beneficiation of Complex Ores for Sustainable Use of Mineral Resources: Refractory Gold Ore Beneficiation as an Example. Int. J. Soc. Mater. Eng. Resour. 2014, 20, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Somasundaran, P.; Zhang, L.; Healy, T.; Ducker, W.; Herrera-Urbina, R.; Fuerstenau, M.C. Adsorption of Surfactants and Its Influence on the Hydrodynamics of Flotation. In Froth Flotation; A Century of Innovation; Fuerstenau, M.C., Jameson, G.J., Yoon, R., Eds.; Society for Mining, Metallurgy, and Exploration, Inc.: Littleton, CO, USA, 2007; pp. 179–225. [Google Scholar]
- British Geological Survey; Bureau de Recherches Géologiques et Minières; Deloitte Sustainability; Directorate-General for Internal Market; Industry, Entrepreneurship and SMEs (European Commission); TNO. Study on the Review of the List of Critical Raw Materials; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Blengini, G.A.; Latunussa, C.E.; Eynard, U.C.; Torres de Matos, D.; Wittmer, K.; Georgitzikis, C.; Pavel, S.; Carrara, L.; Mancini, M.; Unguru, D.; et al. Study on the EU’s List of Critical Raw Materials; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Dehaine, Q.; Filippov, L.O.; Filippova, I.V.; Tijsseling, L.T.; Glass, H.J. Novel approach for processing complex carbonate-rich copper-cobalt mixed ores via reverse flotation. Miner. Eng. 2021, 161, 106710. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, H.; Ma, P.; Luan, Z.; Tong, L.; Jin, Z.; Sand, W. Column bio-oxidation of low-grade refractory gold ore containing high-arsenic and high-sulfur: Insight on change in microbial community structure and sulfide surface corrosion. Miner. Eng. 2021, 175, 107201. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Pontikes, Y. Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review. J. Clean. Prod. 2015, 99, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. J. Sustain. Met. 2016, 2, 365–386. [Google Scholar] [CrossRef]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.; Moran, C.J. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Lèbre, É.; Corder, G.; Golev, A. The Role of the Mining Industry in a Circular Economy: A Framework for Resource Management at the Mine Site Level. J. Ind. Ecol. 2017, 21, 662–672. [Google Scholar] [CrossRef]
- Otsuki, A.; Dodbiba, G.; Fujita, T. Two-Liquid Flotation: Heterocoagulation of Fine Particles in Polar Organic Solvent. Mater. Trans. 2007, 48, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Wang, L.; Xu, Z.; Liu, Q.; Chi, R. Reactive oily bubble technology for flotation of apatite, dolomite and quartz. Int. J. Miner. Process. 2015, 134, 74–81. [Google Scholar] [CrossRef]
- Otsuki, A.; Miller, T. Experimental Investigation on Safer Frother Option for Coal Flotation. Curr. Work. Miner. Process. 2019, 1, 1–12. [Google Scholar] [CrossRef]
- Yen, W.M.; Shionoya, S.; Yamamoto, H. Methods of phosphor synthesis and related technology. In Phosphor Handbook, 2nd ed.; Shionoya, S., Yen, W.M., Yamamoto, H., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 391–394. [Google Scholar]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Ganguli, R.; Cook, D.R. Rare earths: A review of the landscape. MRS Energy Sustain. 2018, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Peiró, L.T.; Méndez, G.V. Material and Energy Requirement for Rare Earth Production. JOM 2013, 65, 1327–1340. [Google Scholar] [CrossRef] [Green Version]
- Zambrana, G.; Medina, R.; Gutierrez, G.; Vargas, R. Recovery of minus ten micron cassiterite by liquid-liquid extraction. Int. J. Miner. Process. 1974, 1, 335–345. [Google Scholar] [CrossRef]
- Hu, B.; Nakahiro, Y.; Wakamatsu, T. The effect of organic solvents on the recovery of fine mineral particles by liquid-liquid extraction. Miner. Eng. 1993, 6, 731–742. [Google Scholar] [CrossRef]
- Otsuki, A.; Mei, G.; Jiang, Y.; Matsuda, M.; Shibayama, A.; Sadaki, J.; Fujita, T. Solid-Solid Separation of Fluorescent Powders by Liquid-Liquid Extraction Using Aqueous and Organic Phases. Resour. Process. 2006, 53, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Otsuki, A.; Dodbiba, G.; Shibayama, A.; Sadaki, J.; Mei, G.; Fujita, T. Separation of Rare Earth Fluorescent Powders by Two-Liquid Flotation using Organic Solvents. Jpn. J. Appl. Phys. 2008, 47, 5093–5099. [Google Scholar] [CrossRef]
- Ding, K.; Laskowski, J. Application of a Modified Water Glass in a Cationic Flotation of Calcite and Dolomite. Can. Metall. Q. 2006, 45, 199–206. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q. Flotation separation of carbonate from sulfide minerals, I: Flotation of single minerals and mineral mixtures. Miner. Eng. 2004, 17, 855–863. [Google Scholar] [CrossRef]
- Luo, X.M.; Yin, W.Z.; Wang, Y.F.; Sun, C.-Y.; Ma, Y.Q.; Liu, J. Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector. J. Central South Univ. 2016, 23, 529–534. [Google Scholar] [CrossRef]
- Wonyen, D.G.; Kromah, V.; Gibson, B.; Nah, S.; Chelgani, S.C. A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite). Minerals 2018, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Liu, Q. Adsorption behaviour of sodium hexametaphosphate on pyrochlore and calcite. Can. Met. Q. 2013, 52, 473–478. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Wen, S.; Ma, M.; Sun, C.; Yin, W.; Ma, Y. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores. Int. J. Miner. Process. 2016, 152, 1–6. [Google Scholar] [CrossRef]
- Li, D.; Yin, W.-Z.; Xue, J.-W.; Yao, J.; Fu, Y.-F.; Liu, Q. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate. Int. J. Miner. Met. Mater. 2017, 24, 736–744. [Google Scholar] [CrossRef]
- World Coal Association. Coal Facts. Available online: https://www.worldcoal.org/coal-facts/ (accessed on 26 June 2021).
- Aaron, N.; Luttrell, G.H. A review of state-of-the-art processing operations in coal preparation. Int. J. Min. Sci. Technol. 2015, 25, 511–521. [Google Scholar] [CrossRef]
- Lynch, A.; Johnson, N.; Manlapig, E.; Thorne, C. Mineral and Coal Flotation Circuits: Their Simulation and Control; Elsevier: Amsterdam, The Netherlands, 1980; p. 292. [Google Scholar]
- Gaudin, A.; Flotation, M.; Fuerstenau, C. Flotation: A.M. Gaudin Memorial Volume; American Institute of Mining, Metallurgical, and Petroleum Engineers: New York, NY, USA, 1976; p. 1341. [Google Scholar]
- Fornasiero, D.; Filippov, L.O. Innovations in the flotation of fine and coarse particles. J. Phys. Conf. Ser. 2017, 879, 12002. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, T.; Ralston, J.; Fornasiero, D. The limits of fine particle flotation. Miner. Eng. 2010, 23, 420–437. [Google Scholar] [CrossRef]
- Otsuki, A.; Yue, C. Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore. J. Phys. Conf. Ser. 2017, 879, 012021. [Google Scholar] [CrossRef] [Green Version]
- Farrokhpay, S.; Filippov, L.; Fornasiero, D. Flotation of Fine Particles: A Review. Miner. Process. Extr. Met. Rev. 2021, 42, 473–483. [Google Scholar] [CrossRef]
- Ansari, M. Fine Particle Processing—A Difficult Problem for Mining Engineers. 1997. Available online: https://eprints.nmlindia.org/2867/ (accessed on 26 June 2021).
- Nguyen, A.; Kmet, S. Probability of collision between particles and bubbles in flotation: The theoretical inertialess model involving a swarm of bubbles in pulp phase. Int. J. Miner. Process. 1994, 40, 155–169. [Google Scholar] [CrossRef]
- Shahbazi, B.; Rezai, B.; Koleini, S.J. Bubble–particle collision and attachment probability on fine particles flotation. Chem. Eng. Process. Process Intensif. 2010, 49, 622–627. [Google Scholar] [CrossRef]
- Wang, L.; Peng, Y.; Runge, K. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technol. 2016, 288, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.G.; Warren, L.J. Entrainment of Particles into Flotation Froths. Miner. Process. Extr. Met. Rev. 1989, 5, 123–145. [Google Scholar] [CrossRef]
- Ahmed, N.; Jameson, G. The effect of bubble size on the rate of flotation of fine particles. Int. J. Miner. Process. 1985, 14, 195–215. [Google Scholar] [CrossRef]
- Yoon, R.H.; Luttrell, G.H. The Effect of Bubble Size on Fine Particle Flotation. Miner. Process. Extr. Met. Rev. 1989, 5, 101–122. [Google Scholar] [CrossRef]
- Hu, Y.; Qiu, G.; Miller, J. Hydrodynamic interactions between particles in aggregation and flotation. Int. J. Miner. Process. 2003, 70, 157–170. [Google Scholar] [CrossRef]
- Farrokhpay, S. The importance of rheology in mineral flotation: A review. Miner. Eng. 2012, 36–38, 272–278. [Google Scholar] [CrossRef]
- Boger, D.V. Rheology and the Resource Industries. In Proceedings of the 14th Asia Pacific Confederation of Chemical Engineering Congress, Singapore, 22–24 February 2012; Volume 64, pp. 4525–4536. [Google Scholar] [CrossRef]
- Orlich, J.N.; Iwasaki, I. Effects of slurry rheology and ball coating on abrasive wear and the grinding rate of quartzite. Min. Met. Explor. 1987, 4, 32–37. [Google Scholar] [CrossRef]
- Bazin, C.; Obiang, P. Should the slurry density in a grinding mill be adjusted as a function of grinding media size? Miner. Eng. 2007, 20, 810–815. [Google Scholar] [CrossRef]
- Govender, I.; Tupper, G.; Mainza, A. Towards a mechanistic model for slurry transport in tumbling mills. Miner. Eng. 2011, 24, 230–235. [Google Scholar] [CrossRef]
- Bazin, C.; B-Chapleau, C. The difficulty associated with measuring slurry rheological properties and linking them to grinding mill performance. Int. J. Miner. Process. 2005, 76, 93–99. [Google Scholar] [CrossRef]
- Tavares, L.; Souza, L.; Lima, J.; Possa, M. Modeling classification in small-diameter hydrocyclones under variable rheological conditions. Miner. Eng. 2002, 15, 613–622. [Google Scholar] [CrossRef]
- Possa, M.; Lima, J. The effect of viscosity on small-diameter hydrocyclones’ performance in desliming process. Develop. Miner. Process. 2000, 13, C4-29–C4-35. [Google Scholar] [CrossRef]
- Marthinussen, S.-A.; Chang, Y.-F.; Balakin, B.; Hoffmann, A.C. Removal of particles from highly viscous liquids with hydrocyclones. Chem. Eng. Sci. 2014, 108, 169–175. [Google Scholar] [CrossRef]
- Doby, M.J.; Nowakowski, A.F.; Yiu, I.; Dyakowski, T. Understanding air core formation in hydrocyclones by studying pressure distribution as a function of viscosity. Int. J. Miner. Process. 2008, 86, 18–25. [Google Scholar] [CrossRef]
- Cruz, N.; Peng, Y.; Wightman, E.; Xu, N. The interaction of pH modifiers with kaolinite in copper–gold flotation. Miner. Eng. 2015, 84, 27–33. [Google Scholar] [CrossRef]
- Forbes, E.; Davey, K.; Smith, L. Decoupling rehology and slime coatings effect on the natural flotability of chalcopyrite in a clay-rich flotation pulp. Miner. Eng. 2014, 56, 136–144. [Google Scholar] [CrossRef]
- Shi, F.; Zheng, X. The rheology of flotation froths. Int. J. Miner. Process. 2003, 69, 115–128. [Google Scholar] [CrossRef]
- Jeldres, R.I.; Uribe, L.; Cisternas, L.A.; Gutierrez, L.; Leiva, W.H.; Valenzuela, J. The effect of clay minerals on the process of flotation of copper ores—A critical review. Appl. Clay Sci. 2019, 170, 57–69. [Google Scholar] [CrossRef]
- Subrahmanyam, T.; Forssberg, E. Froth stability, particle entrainment and drainage in flotation–A review. Int. J. Miner. Process. 1988, 23, 33–53. [Google Scholar] [CrossRef]
- Cruz, N.; Forster, J.; Bobicki, E.R. Slurry rheology in mineral processing unit operations: A critical review. Can. J. Chem. Eng. 2019, 97, 2102–2120. [Google Scholar] [CrossRef]
- Wang, L.; Li, C. A Brief Review of Pulp and Froth Rheology in Mineral Flotation. J. Chem. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Blair, C.C.; Brian, Q. Microplastic separation techniques. In Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2017; pp. 203–218. [Google Scholar]
- Otsuki, A.; Zhao, Y. UV-Vis Study of Mixed Collector Adsorption on Pyrite to enhance refractory gold ore beneficiation by flotation. Curr. Work. Miner. Process. 2018, 1, 13–20. [Google Scholar]
- Otsuki, A.; Miller, T. Safer Frother Option for Coal Flotation–A Review. Curr. Work. Miner. Process. 2019, 1, 21–29. [Google Scholar] [CrossRef]
- Crabtree, E.; Vincent, J. Historical Outline of Major Flotation Developments. In Froth Flotation; Anniversary Volume; Fuerstenau, D.W., Ed.; AIME: New York, NY, USA, 1962; Volume 50, pp. 39–54. [Google Scholar]
- Fuerstenau, M.; Sabacky, B. On the natural floatability of sulfides. Int. J. Miner. Process. 1981, 8, 79–84. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J.A. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 8th ed.; Butterworth-Heinemann: Oxford, UK, 2016; 512p. [Google Scholar]
- Tymon. Lin Ma Hang Mine Part 3—Exploitation. The Industrial History of Hong Kong Group. 28 April 2018. Available online: https://industrialhistoryhk.org/lin-ma-hang-part-3-exploitation/ (accessed on 25 January 2021).
- Wu, Z.H.; Hu, Y.J.; Lee, D.J.; Mujumdar, A.S.; Li, Z.Y. Dewatering and Drying in Mineral Processing Industry: Potential for Innovation. Dry. Technol. 2010, 28, 834–842. [Google Scholar] [CrossRef]
- Le Roux, M.; Campbell, Q.; Watermeyer, M.; de Oliveira, S. The optimization of an improved method of fine coal dewatering. Miner. Eng. 2005, 18, 931–934. [Google Scholar] [CrossRef]
- Kelly, E.G. Mineral Processing. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 29–57. [Google Scholar]
- Kyzas, G.Z.; Lazaridis, N.; Matis, K.A. Flotation: Recent innovations in an interesting and effective separation process. In Interface Science and Technology; Kyzas, G.Z., Mitropoulos, A.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 30, pp. 15–42. [Google Scholar]
- Li, S.; Lu, D.; Chen, X.; Zheng, X.; Li, X.; Chu, H.; Wang, Y. Industrial application of a modified pilot-scale Jameson cell for the flotation of spodumene ore in high altitude area. Powder Technol. 2017, 320, 358–361. [Google Scholar] [CrossRef]
- Nakhaei, F.; Mosavi, M.R.; Sam, A.; Vaghei, Y. Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. Int. J. Miner. Process. 2012, 110–111, 140–154. [Google Scholar] [CrossRef]
- Goodall, C.; O’Connor, C. Pulp-froth interactions in a laboratory column flotation cell. Miner. Eng. 1991, 4, 951–958. [Google Scholar] [CrossRef]
- Vashisth, S.; Bennington, C.P.; Grace, J.R.; Kerekes, R.J. Column Flotation Deinking: State-of-the-art and opportunities. Resour. Conserv. Recycl. 2011, 55, 1154–1177. [Google Scholar] [CrossRef]
- Anderson, C.; Harris, M.; Deglon, D. Flotation in a novel oscillatory baffled column. Miner. Eng. 2009, 22, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Finch, J. Column flotation: A selected review— part IV: Novel flotation devices. Miner. Eng. 1995, 8, 587–602. [Google Scholar] [CrossRef]
- Gu, L.; Yalcin, T. Semi-batch flotation column. Miner. Eng. 2011, 26, 105–107. [Google Scholar] [CrossRef]
- Tao, D.; Luttrell, G.; Yoon, R.-H. An experimental investigation on column flotation circuit configuration. Int. J. Miner. Process. 2000, 60, 37–56. [Google Scholar] [CrossRef]
- Samygin, V.D.; Panin, V.V.; Filippov, L.; Stenin, N.Y. Development of a reactor-separator flotation machine designed by the Moscow Institute of Steel and Alloys. Metals 2010, 54, 394–400. [Google Scholar] [CrossRef]
- Fuerstenau, D. Fine particle flotation. In Proceedings of the International Symposium, Freiburg, Germany, 27–31 May 1980. [Google Scholar]
- Li, H. The Roles of Non-Polar Oil in Froth Flotation of Fine Particles. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2018. [Google Scholar]
- Hiemenz, P.C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Fornasiero, D.; Ralston, J. Cu(II) and Ni(II) activation in the flotation of quartz, lizardite and chlorite. Int. J. Miner. Process. 2005, 76, 75–81. [Google Scholar] [CrossRef]
- Zhou, Z.; Scales, P.; Boger, D.V. Chemical and physical control of the rheology of concentrated metal oxide suspensions. Chem. Eng. Sci. 2001, 56, 2901–2920. [Google Scholar] [CrossRef]
- Qin, K.; Zaman, A.A. Viscosity of concentrated colloidal suspensions: Comparison of bidisperse models. J. Colloid Interface Sci. 2003, 266, 461–467. [Google Scholar] [CrossRef]
- Genovese, D.B. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Adv. Colloid Interface Sci. 2012, 171–172, 1–16. [Google Scholar] [CrossRef]
- Russel, W.B. Review of the Role of Colloidal Forces in the Rheology of Suspensions. J. Rheol. 1980, 24, 287–317. [Google Scholar] [CrossRef]
- Metzner, A.B. Rheology of Suspensions in Polymeric Liquids. J. Rheol. 1985, 29, 739–775. [Google Scholar] [CrossRef]
- Servais, C.; Jones, R.; Roberts, I. The influence of particle size distribution on the processing of food. J. Food Eng. 2002, 51, 201–208. [Google Scholar] [CrossRef]
- Shengo, M.; Kime, M.-B.; Mambwe, M.; Nyembo, T. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J. Sustain. Min. 2019, 18, 226–246. [Google Scholar] [CrossRef]
- Benzaazoua, M.; Bussière, B.; Kongolo, M.; McLaughlin, J.; Marion, P. Environmental desulphurization of four Canadian mine tailings using froth flotation. Int. J. Miner. Process. 2000, 60, 57–74. [Google Scholar] [CrossRef]
- Mbamba, C.K.; Harrison, S.; Franzidis, J.-P.; Broadhurst, J. Mitigating acid rock drainage risks while recovering low-sulfur coal from ultrafine colliery wastes using froth flotation. Miner. Eng. 2012, 29, 13–21. [Google Scholar] [CrossRef]
- Stankovic, V.; Milosevic, V.; Milicevic, D.; Gorgievski, M.; Bogdanovic, G. Reprocessing of the old flotation tailings deposited on the RTB Bor tailings pond–A case study. Chem. Ind. Chem. Eng. Q. 2018, 24, 333–344. [Google Scholar] [CrossRef]
- Chen, D.; Yu, Y.; Liu, L.M.; Bin Han, Z. Study on Flotation Technique to Recycle Copper from Tailings. Adv. Mater. Res. 2014, 878, 322–329. [Google Scholar] [CrossRef]
- Darabi, H.; Koleini, S.J.; Deglon, D.; Rezai, B.; Abdollahy, M. Investigation of bubble-particle interactions in a mechanical flotation cell, part 1: Collision frequencies and efficiencies. Miner. Eng. 2019, 134, 54–64. [Google Scholar] [CrossRef]
- Dai, Z.; Fornasiero, D.; Ralston, J. Particle–bubble collision models—A review. Adv. Colloid Interface Sci. 2000, 85, 231–256. [Google Scholar] [CrossRef]
- Ralston, J.; Fornasiero, D.; Hayes, R. Bubble–particle attachment and detachment in flotation. Int. J. Miner. Process. 1999, 56, 133–164. [Google Scholar] [CrossRef]
- Darabi, H.; Koleini, S.J.; Deglon, D.; Rezai, B.; Abdollahy, M. Investigation of bubble-particle attachment, detachment and collection efficiencies in a mechanical flotation cell. Powder Technol. 2020, 375, 109–123. [Google Scholar] [CrossRef]
- Derjaguin, B.; Dukhin, S. Theory of flotation of small and medium-size particles. Prog. Surf. Sci. 1993, 43, 241–266. [Google Scholar] [CrossRef]
- Pyke, B.; Fornasiero, D.; Ralston, J. Bubble particle heterocoagulation under turbulent conditions. J. Colloid Interface Sci. 2003, 265, 141–151. [Google Scholar] [CrossRef]
- Trahar, W.; Warren, L. The flotability of very fine particles–A review. Int. J. Miner. Process. 1976, 3, 103–131. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Hassas, B.V.; Kouachi, S.; Brabcova, Z.; Çelik, M.S. Effect of bubble size and velocity on collision efficiency in chalcopyrite flotation. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 498, 258–267. [Google Scholar] [CrossRef]
- Yoon, R.H.; Luttrell, G.H. The Effect of Bubble Size on Fine Coal Flotation. Coal Prep. 1986, 2, 179–192. [Google Scholar] [CrossRef]
- Dai, Z.; Fornasiero, D.; Ralston, J. Influence of dissolved gas on bubble–particle heterocoagulation. J. Chem. Soc. Faraday Trans. 1998, 94, 1983–1987. [Google Scholar] [CrossRef]
- Reay, D.; Ratcliff, G.A. Experimental testing of the hydrodynamic collision model of fine particle flotation. Can. J. Chem. Eng. 1975, 53, 481–486. [Google Scholar] [CrossRef]
- Liu, Q.; Wannas, D. The Role of Polymeric-depressant-induced Flocculation in Fine Particle Flotation. In Proceedings of the Fifth UBC-McGill Biennial International Symposium on Fundamentals of Mineral, 43rd Annual Conference of Metallurgists of CIM, Montreal, QC, Canada, 22–25 August 2004. [Google Scholar]
- Schwarz, S.; Grano, S. Effect of particle hydrophobicity on particle and water transport across a flotation froth. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 256, 157–164. [Google Scholar] [CrossRef]
- Li, H.; Liu, M.; Liu, Q. Oil-assisted flotation of fine hematite using sodium oleate or hydroxamic acids as a collector. Physicochem. Probl. Miner. Processing 2018, 54, 1130–1145. [Google Scholar]
- Song, S.; Lopez-Valdivieso, A. Parametric aspect of Hydrophobic flocculation technology. Miner. Process. Extr. Met. Rev. 2002, 23, 101–127. [Google Scholar] [CrossRef]
- Cadzow, M.D.; Elkes, G.J.; Ewin, G.J.; Mainwaring, D.E. Recovery of Metal Values from Mineral Ores by Incorporation in Coal-Oil Agglomerates. U.S. Patent 4,585,548, 29 April 1986. [Google Scholar]
- Şen, Ş.; Seyrankaya, A.; Cilingir, Y. Coal–oil assisted flotation for the gold recovery. Miner. Eng. 2005, 18, 1086–1092. [Google Scholar] [CrossRef]
- Akcil, A.; Wu, X.Q.; Aksay, E.K. Coal-Gold Agglomeration: An Alternative Separation Process in Gold Recovery. Sep. Purif. Rev. 2009, 38, 173–201. [Google Scholar] [CrossRef]
- Zou, S.; Ma, X.; Wang, S.; Zhong, H.; Qin, W. Flotation of rhodochrosite fines induced by octyl hydroxamic acid as hydrophobic agglomerates. Powder Technol. 2021, 392, 108–115. [Google Scholar] [CrossRef]
- Song, S.; Lopez-Valdivieso, A.; Reyes-Bahena, J.L.; Bermejo-Perez, H.I.; Trass, O. Hydrophobic Flocculation of Galena Fines in Aqueous Suspensions. J. Colloid Interface Sci. 2000, 227, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.-Z.; Yang, X.-S.; Zhou, D.-P.; Li, Y.-J.; Lü, Z.-F. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans. Nonferrous Met. Soc. China 2011, 21, 652–664. [Google Scholar] [CrossRef]
- Duan, J.; Fornasiero, D.; Ralston, J. Calculation of the flotation rate constant of chalcopyrite particles in an ore. Int. J. Miner. Process. 2003, 72, 227–237. [Google Scholar] [CrossRef]
- Song, S.; Lopez-Valdivieso, A.; Reyes-Bahena, J.L.; Lara-Valenzuela, C. Floc flotation of galena and sphalerite fines. Miner. Eng. 2001, 14, 87–98. [Google Scholar] [CrossRef]
- Hewitt, D.; Fornasiero, D.; Ralston, J. Bubble–particle attachment. J. Chem. Soc. Faraday Trans. 1995, 91, 1997–2001. [Google Scholar] [CrossRef]
- Rubio, J.; Capponi, F.; Rodrigues, R.; Matiolo, E. Enhanced flotation of sulfide fines using the emulsified oil extender technique. Int. J. Miner. Process. 2007, 84, 41–50. [Google Scholar] [CrossRef]
- Arriagada, S.; Acuña, C.; Vera, M. New technology to improve the recovery of fine particles in froth flotation based on using hydrophobized glass bubbles. Miner. Eng. 2020, 156, 106364. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Filippova, I.; Filippov, L.; Picarra, A.; Rulyov, N.; Fornasiero, D. Flotation of fine particles in the presence of combined microbubbles and conventional bubbles. Miner. Eng. 2020, 155, 106439. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, X.; Bu, X.; Wang, M.; An, B.; Shao, H.; Ni, C.; Peng, Y.; Xie, G. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultra-fine particles. Ultrason. Sonochem. 2020, 64, 105005. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, L.; Zhang, Y. Role of nanobubbles in the flotation of fine rutile particles. Miner. Eng. 2021, 172, 107140. [Google Scholar] [CrossRef]
- Gontijo, C.D.F.; Fornasiero, D.; Ralston, J. The Limits of Fine and Coarse Particle Flotation. Can. J. Chem. Eng. 2008, 85, 739–747. [Google Scholar] [CrossRef]
- Sutherland, K.L. Physical Chemistry of Flotation. XI. Kinetics of the Flotation Process. J. Phys. Chem. 1948, 52, 394–425. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Firouzi, M.; Albijanic, B.; Celik, M.S. A review on determination of particle–bubble encounter using analytical, experimental and numerical methods. Miner. Eng. 2018, 122, 296–311. [Google Scholar] [CrossRef]
- Pease, J.; Curry, D.; Young, M. Designing flotation circuits for high fines recovery. Miner. Eng. 2006, 19, 831–840. [Google Scholar] [CrossRef]
- Trahar, W. A rational interpretation of the role of particle size in flotation. Int. J. Miner. Process. 1981, 8, 289–327. [Google Scholar] [CrossRef]
- Warren, L.J. Determination of the contributions of true flotation and entrainment in batch flotation tests. Int. J. Miner. Process. 1985, 14, 33–44. [Google Scholar] [CrossRef]
- Mhonde, N.; Wiese, J.; McFadzean, B. Comparison of collector performance for a South African and a Brazilian iron ore considering mineralogical characteristics. Miner. Eng. 2017, 113, 55–67. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Q. Influence of aggregation/dispersion state of hydrophilic particles on their entrainment in fine mineral particle flotation. Miner. Eng. 2021, 166, 106835. [Google Scholar] [CrossRef]
- George, P.; Nguyen, A.; Jameson, G. Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles. Miner. Eng. 2004, 17, 847–853. [Google Scholar] [CrossRef]
- Innocent Achaye. Effect of Particle Properties on Froth Stability; University of Cape Town: Cape Town, South Africa, 2017. [Google Scholar]
- Barbian, N.; Ventura-Medina, E.; Cilliers, J. Mineral Attachment and Bubble Bursting in Flotation Froths; Australasian Institute of Mining and Metallurgy: Carlton, VA, Australia, 2005; pp. 321–327. [Google Scholar]
- Aktas, Z.; Cilliers, J.; Banford, A. Dynamic froth stability: Particle size, airflow rate and conditioning time effects. Int. J. Miner. Process. 2008, 87, 65–71. [Google Scholar] [CrossRef]
- Pugh, R. Experimental techniques for studying the structure of foams and froths. Adv. Colloid Interface Sci. 2005, 114–115, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.-Q.; Xiao, Z.; Tang, J.-A.; Jiang, L. The effect of SiO2 particles upon stabilization of foam. J. Colloid Interface Sci. 1989, 131, 498–502. [Google Scholar] [CrossRef]
- Arnold, B.; Aplan, F. The effect of clay slimes on coal flotation, part I: The nature of the clay. Int. J. Miner. Process. 1986, 17, 225–242. [Google Scholar] [CrossRef]
- Taggart, A.; Taylor, T.; Ince, C. Experiments with Flotation Agents; The American Institute of Mining, Metallurgical, and Petroleum Engineers: New York, NY, USA, 1929; Volume 87, pp. 285–386. [Google Scholar]
- Attia, Y.A.; Deason, D. Control of slimes coating in mineral suspensions. Colloids Surfaces 1989, 39, 227–238. [Google Scholar] [CrossRef]
- Oats, W.J.; Ozdemir, O.; Nguyen, A. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Miner. Eng. 2010, 23, 413–419. [Google Scholar] [CrossRef]
- Bakker, C.; Meyer, C.; Deglon, D. The development of a cavern model for mechanical flotation cells. Miner. Eng. 2010, 23, 968–972. [Google Scholar] [CrossRef]
- Farrokhpay, S. The significance of froth stability in mineral flotation—A review. Adv. Colloid Interface Sci. 2011, 166, 1–7. [Google Scholar] [CrossRef]
- Ndlovu, B.; Becker, M.; Forbes, E.; Deglon, D.; Franzidis, J.-P. The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner. Eng. 2011, 24, 1314–1322. [Google Scholar] [CrossRef]
- Shabalala, N.; Harris, M.; Filho, L.L.; Deglon, D. Effect of slurry rheology on gas dispersion in a pilot-scale mechanical flotation cell. Miner. Eng. 2011, 24, 1448–1453. [Google Scholar] [CrossRef]
- Patra, P.; Bhambhani, T.; Nagaraj, D.; Somasundaran, P. Impact of pulp rheological behavior on selective separation of Ni minerals from fibrous serpentine ores. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 411, 24–26. [Google Scholar] [CrossRef]
- Wang, L.; Runge, K.; Peng, Y.; Vos, C. An empirical model for the degree of entrainment in froth flotation based on particle size and density. Miner. Eng. 2016, 98, 187–193. [Google Scholar] [CrossRef]
- Forrest, W.R.; Adel, G.T.; Yoon, R.-H. Characterizing Coal Flotation Performance Using Release Analysis. Coal Prep. 1994, 14, 13–27. [Google Scholar] [CrossRef]
- Akdemir, Ü.; Sönmez, I. Investigation of coal and ash recovery and entrainment in flotation. Fuel Process. Technol. 2003, 82, 1–9. [Google Scholar] [CrossRef]
- Wang, L.; Peng, Y.; Runge, K.; Bradshaw, D. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner. Eng. 2015, 70, 77–91. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Isayev, A.I. Introduction. Rheology; Subject and Goals. In Rheology. Concepts, Methods, and Applications, 3rd ed.; Elsevier: London, UK, 2017; pp. 1–8. [Google Scholar]
- Taylor, M.L.; Morris, G.E.; Smart, R.S. Influence of aluminum doping on titania pigment structural and dispersion properties. J. Colloid Interface Sci. 2003, 262, 81–88. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Morris, G.E.; Fornasiero, D.; Self, P. Stabilisation of titania pigment particles with anionic polymeric dispersants. Powder Technol. 2010, 202, 143–150. [Google Scholar] [CrossRef]
- Mpofu, P.; Addai-Mensah, J.; Ralston, J. Investigation of the effect of polymer structure type on flocculation, rheology and dewatering behaviour of kaolinite dispersions. Int. J. Miner. Process. 2003, 71, 247–268. [Google Scholar] [CrossRef]
- McFarlane, A.; Bremmell, K.; Addai-Mensah, J. Microstructure, rheology and dewatering behaviour of smectite dispersions during orthokinetic flocculation. Miner. Eng. 2005, 18, 1173–1182. [Google Scholar] [CrossRef]
- Nosrati, A.; Addai-Mensah, J.; Skinner, W. Rheology of aging aqueous muscovite clay dispersions. Chem. Eng. Sci. 2011, 66, 119–127. [Google Scholar] [CrossRef]
- Morris, E.G.; Fornasiero, D.; Ralston, J. Polymer depressants at the talc–water interface: Adsorption isotherm, microflotation and electrokinetic studies. Int. J. Miner. Process. 2002, 67, 211–227. [Google Scholar] [CrossRef]
- Burdukova, E.; Bradshaw, D.; Laskowski, J. Effect of CMC and pH on the Rheology of Suspensions of Isotropic and Anisotropic Minerals. Can. Met. Q. 2007, 46, 273–278. [Google Scholar] [CrossRef]
- Dinçer, H.; Boylu, F.; Sirkeci, A.; Ateşok, G. The effect of chemicals on the viscosity and stability of coal water slurries. Int. J. Miner. Process. 2003, 70, 41–51. [Google Scholar] [CrossRef]
- Muster, T.; Prestidge, C. Rheological investigations of sulphide mineral slurries. Miner. Eng. 1995, 8, 1541–1555. [Google Scholar] [CrossRef]
- Clout, J.; Manuel, J. Mineralogical, chemical, and physical characteristics of iron ore. In Iron Ore; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 45–84. [Google Scholar]
- Paar, A. Viscosity and Viscometry. Available online: https://wiki.anton-paar.com/en/basic-of-viscometry/#apparent-viscosity (accessed on 24 June 2021).
- Otsuki, A. Rheology of colloidal particle suspensions. In Micro and Nano Technologies, Rheology of Polymer Blends and Nanocomposites; Thomas, S., Sarathchandran, C., Chandran, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 49–71. [Google Scholar]
- Ndlovu, B.; Forbes, E.; Farrokhpay, S.; Becker, M.; Bradshaw, D.; Deglon, D. A preliminary rheological classification of phyllosilicate group minerals. Miner. Eng. 2014, 55, 190–200. [Google Scholar] [CrossRef]
- Otsuki, A.; Bryant, G. Characterization of the interactions within fine particle mixtures in highly concentrated suspensions for advanced particle processing. Adv. Colloid Interface Sci. 2015, 226, 37–43. [Google Scholar] [CrossRef]
- Nguyen, A.; George, P.; Jameson, G.J. Demonstration of a minimum in the recovery of nanoparticles by flotation: Theory and experiment. Chem. Eng. Sci. 2006, 61, 2494–2509. [Google Scholar] [CrossRef]
- Ata, S.; Yates, P. Stability and flotation behaviour of silica in the presence of a non-polar oil and cationic surfactant. Colloids Surfaces A Physicochem. Eng. Asp. 2006, 277, 1–7. [Google Scholar] [CrossRef]
- Kusaka, E.; Tamai, H.; Nakahiro, Y.; Wakamatsu, T. Role of surface free energy in a solid surface during collectorless liquid-liquid extraction. Miner. Eng. 1993, 6, 455–464. [Google Scholar] [CrossRef]
- Mitchell, T.K.; Nguyen, A.; Evans, G.M. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation. Adv. Colloid Interface Sci. 2005, 114–115, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Butt, H.-J.; Cappella, B.; Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 2005, 59, 1–152. [Google Scholar] [CrossRef] [Green Version]
- Drelich, J.; Long, J.; Xu, Z.; Masliyah, J.; White, C. Probing colloidal forces between a Si3N4 AFM tip and single nanoparticles of silica and alumina. J. Colloid Interface Sci. 2006, 303, 627–638. [Google Scholar] [CrossRef]
- Yoon, R.-H.; Flinn, D.H.; Rabinovich, Y.I. Hydrophobic Interactions between Dissimilar Surfaces. J. Colloid Interface Sci. 1997, 185, 363–370. [Google Scholar] [CrossRef]
- Yates, P.D.; Franks, G.V.; Biggs, S.; Jameson, G.J. Heteroaggregation with nanoparticles: Effect of particle size ratio on optimum particle dose. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 255, 85–90. [Google Scholar] [CrossRef]
- Otsuki, A.; De Campo, L.; Garvey, C.J.; Rehm, C. H2O/D2O Contrast Variation for Ultra-Small-Angle Neutron Scattering to Minimize Multiple Scattering Effects of Colloidal Particle Suspensions. Colloids Interfaces 2018, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Tamai, H.; Hakozaki, T.; Suzawa, T. Deposition of polymethyl methacrylate latex on fibers. Colloid Polym. Sci. 1980, 258, 870–876. [Google Scholar] [CrossRef]
- Fujita, Y.; Kobayashi, M. The Initial Deposition Behavior of Silica Colloid and Amino-Modified Silica Colloid in Unsaturated Sand Columns. Water 2020, 12, 2892. [Google Scholar] [CrossRef]
- Shiratori, K.; Yamashita, Y.; Adachi, Y. Deposition and subsequent release of Na-kaolinite particles by adjusting pH in the column packed with Toyoura sand. Colloids Surfaces A Physicochem. Eng. Asp. 2007, 306, 137–141. [Google Scholar] [CrossRef]
- Hunter, R.J. Foundations of Colloids Science; Oxford University Press: Oxford, UK, 2001; pp. 749–760. [Google Scholar]
- Addai-Mensah, J.; Ralston, J. Investigation of the role of interfacial chemistry on particle interactions, sedimentation and electroosmotic dewatering of model kaolinite dispersions. Powder Technol. 2005, 160, 35–39. [Google Scholar] [CrossRef]
- Otsuki, A.; Barry, S.; Fornasiero, D. Rheological studies of nickel oxide and quartz/hematite mixture systems. Adv. Powder Technol. 2011, 22, 471–475. [Google Scholar] [CrossRef]
- Mesa, D.; Brito-Parada, P.R. Scale-up in froth flotation: A state-of-the-art review. Sep. Purif. Technol. 2019, 210, 950–962. [Google Scholar] [CrossRef]
- Deglon, D. The effect of agitation on the flotation of platinum ores. Miner. Eng. 2005, 18, 839–844. [Google Scholar] [CrossRef]
- Schubert, H.; Bischofberger, C. On the hydrodynamics of flotation machines. Int. J. Miner. Process. 1978, 5, 131–142. [Google Scholar] [CrossRef]
- Schubert, H.; Bischofberger, C. On the microprocesses air dispersion and particle-bubble attachment in flotation machines as well as consequences for the scale-up of macroprocesses. Int. J. Miner. Process. 1998, 52, 245–259. [Google Scholar] [CrossRef]
- Sajjad, M.; Otsuki, A. Coupling flotation rate constant and viscosity models. Metals, 2021; under review. [Google Scholar]
- Ogawa, A.; Yamada, H.; Matsuda, S.; Okajima, K.; Doi, M. Viscosity equation for concentrated suspensions of charged colloidal particles. J. Rheol. 1997, 41, 769–785. [Google Scholar] [CrossRef]
- Becker, M.; Yorath, G.; Ndlovu, B.; Harris, M.; Deglon, D.; Franzidis, J.-P. A rheological investigation of the behaviour of two Southern African platinum ores. Miner. Eng. 2013, 49, 92–97. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Ndlovu, B.; Bradshaw, D. Behaviour of swelling clays versus non-swelling clays in flotation. Miner. Eng. 2016, 96–97, 59–66. [Google Scholar] [CrossRef]
- Chen, X.; Hadde, E.; Liu, S.; Peng, Y. The effect of amorphous silica on pulp rheology and copper flotation. Miner. Eng. 2017, 113, 41–46. [Google Scholar] [CrossRef]
- Gibson, C.; Kelebek, S. Sensitivity of pentlandite flotation in complex sulfide ores towards pH control by lime versus soda ash: Effect on ore type. Int. J. Miner. Process. 2014, 127, 44–51. [Google Scholar] [CrossRef]
- Michaud, D. The Importance of pH in Flotation. 911 Metallurgist. 10 August 2015. Available online: https://www.911metallurgist.com/blog/the-importance-of-ph-control-in-flotation (accessed on 29 October 2021).
- Sasaki, K.; Takatsugi, K.; Ishikura, K.; Hirajima, T. Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pH values. Hydrometallurgy 2010, 100, 144–151. [Google Scholar] [CrossRef]
- Göktepe, F. Effect of pH on pulp potential and sulphide mineral flotation. Turk. J. Eng. Environ. Sci. 2002, 26, 309–318. [Google Scholar]
- Anovitz, L.M.; Cole, D.R. Characterization and Analysis of Porosity and Pore Structures. Rev. Miner. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Fuerstenau, M.C.; Miller, J.D.; Kuhn, M.C. Chemistry of Flotation; Society of Mining Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers: New York, NY, USA, 1985. [Google Scholar]
- Valdivieso, A.L.; Escamilla, C.O.; Song, S.; Baez, I.L.; Martı#xnez, I.G. Adsorption of isopropyl xanthate ions onto arsenopyrite and its effect on flotation. Int. J. Miner. Process. 2003, 69, 175–184. [Google Scholar] [CrossRef]
- O’Brien, R.; Cannon, D.; Rowlands, W. Electroacoustic Determination of Particle Size and Zeta Potential. J. Colloid Interface Sci. 1995, 173, 406–418. [Google Scholar] [CrossRef]
- Johnson, S.B.; Franks, G.; Scales, P.; Boger, D.V.; Healy, T.W. Surface chemistry–rheology relationships in concentrated mineral suspensions. Int. J. Miner. Process. 2000, 58, 267–304. [Google Scholar] [CrossRef]
- Derjaguin, B.; Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 1993, 43, 30–59. [Google Scholar] [CrossRef]
- Verwey, E.J.W. Theory of the Stability of Lyophobic Colloids; Elsevier: Amsterdam, The Netherlands, 1948. [Google Scholar]
- Diao, M.; Taran, E.; Mahler, S.; Nguyen, A. A concise review of nanoscopic aspects of bioleaching bacteria–mineral interactions. Adv. Colloid Interface Sci. 2014, 212, 45–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuki, A.; Hayagan, N.L. Zeta potential of inorganic fine particle—Na-bentonite binder mixture systems. Electrophoresis 2020, 41, 1405–1412. [Google Scholar] [CrossRef]
- Elphick, K.; Yamaguchi, A.; Otsuki, A.; Hayagan, N.; Hirohata, A. Non-Destructive Imaging on Synthesised Nanoparticles. Materials 2021, 14, 613. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Han, Z.; He, C.; Feng, Q.; Wang, K.; Wang, Y.; Luo, N.; Dodbiba, G.; Wei, Y.; Otsuki, A.; et al. Long-Term Stability of Different Kinds of Gas Nanobubbles in Deionized and Salt Water. Materials 2021, 14, 1808. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: London, UK, 2011. [Google Scholar]
- Hogg, R.; Healy, T.W.; Fuerstenau, D.W. Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 1966, 62, 1638–1651. [Google Scholar] [CrossRef]
- Leong, Y.; Ong, B. Critical zeta potential and the Hamaker constant of oxides in water. Powder Technol. 2003, 134, 249–254. [Google Scholar] [CrossRef]
- Flatt, R.J.; Bowen, P. Yodel: A Yield Stress Model for Suspensions. J. Am. Ceram. Soc. 2006, 89, 1244–1256. [Google Scholar] [CrossRef]
- Otsuki, A. Coupling colloidal forces with yield stress of charged inorganic particle suspension: A review. Electrophoresis 2018, 39, 690–701. [Google Scholar] [CrossRef]
- Genc, A.M.; Kilickaplan, I.; Laskowski, J.S. Effect of pulp rheology on flotation of nickel sulphide ore with fibrous gangue particles. Can. Met. Q. 2012, 51, 368–375. [Google Scholar] [CrossRef]
- Bakker, C.; Meyer, C.; Deglon, D. Numerical modelling of non-Newtonian slurry in a mechanical flotation cell. Miner. Eng. 2009, 22, 944–950. [Google Scholar] [CrossRef]
- Schubert, H. On the optimization of hydrodynamics in fine particle flotation. Miner. Eng. 2008, 21, 930–936. [Google Scholar] [CrossRef]
- Li, C.; Cao, Y.; Peng, W.; Shi, F. On the correlation between froth stability and viscosity in flotation. Miner. Eng. 2020, 149, 106269. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Nicholson, T.; Lauten, R.A. The different effects of bentonite and kaolin on copper flotation. Appl. Clay Sci. 2015, 114, 48–52. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Ndlovu, B.; Bradshaw, D. Behavior of talc and mica in copper ore flotation. Appl. Clay Sci. 2018, 160, 270–275. [Google Scholar] [CrossRef]
- Zhang, M.; Peng, Y.; Xu, N. The effect of sea water on copper and gold flotation in the presence of bentonite. Miner. Eng. 2015, 77, 93–98. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Nicholson, T.; Lauten, R.A. The role of cations in copper flotation in the presence of bentonite. Miner. Eng. 2016, 96–97, 108–112. [Google Scholar] [CrossRef]
- Xu, D.; Ametov, I.; Grano, S. Quantifying rheological and fine particle attachment contributions to coarse particle recovery in flotation. Miner. Eng. 2012, 39, 89–98. [Google Scholar] [CrossRef]
- Zhang, M.; Peng, Y. Effect of clay minerals on pulp rheology and the flotation of copper and gold minerals. Miner. Eng. 2015, 70, 8–13. [Google Scholar] [CrossRef]
- Basnayaka, L.; Subasinghe, N.; Albijanic, B. Influence of clays on the slurry rheology and flotation of a pyritic gold ore. Appl. Clay Sci. 2017, 136, 230–238. [Google Scholar] [CrossRef]
- Schubert, H. On the turbulence-controlled microprocesses in flotation machines. Int. J. Miner. Process. 1999, 56, 257–276. [Google Scholar] [CrossRef]
- Li, C.; Runge, K.; Shi, F.; Farrokhpay, S. Effect of flotation conditions on froth rheology. Powder Technol. 2018, 340, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Runge, K.; Shi, F.; Farrokhpay, S. Effect of froth rheology on froth and flotation performance. Miner. Eng. 2018, 115, 4–12. [Google Scholar] [CrossRef]
- Li, C.; Runge, K.; Shi, F.; Farrokhpay, S. Effect of flotation froth properties on froth rheology. Powder Technol. 2016, 294, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, X.; Lauten, R.A.; Peng, Y.; Liu, Q. Mitigating the negative effects of clay minerals on gold flotation by a lignosulfonate-based biopolymer. Miner. Eng. 2018, 126, 9–15. [Google Scholar] [CrossRef]
- Cruz, N.; Peng, Y.; Wightman, E.; Xu, N. The interaction of clay minerals with gypsum and its effects on copper–gold flotation. Miner. Eng. 2015, 77, 121–130. [Google Scholar] [CrossRef]
Researcher | Approach Adopted | Findings |
---|---|---|
Ahmed and Jameson (1985) [43] | Bubble size reduction | The flotation rate constant of fine particles (<50 µm) increased up to five hundred-folds (1 × 10−4 to 5 × 10−2 s−1 at 300 rpm). |
Yoon and Luttrell (1986) [106] | Bubble size reduction | Particle–bubble attachment probability increased with a decrease in the induction time and maximum particle–bubble probability (0.92) was recorded at 350 µm bubble size at 10 msec induction time. |
Hewitt et al. (1995) [121] | Bubble size reduction | Smaller bubbles have higher attachment efficiencies than do larger bubbles for all particle sizes over a wide range of contact angles and ionic strengths. |
Song et al. (2001) [120] | Use of potassium amyl xanthate (PAX) for the formation of flocs of galena and sphalerite | The floc flotation of galena and sphalerite fines (<20 µm) can reach floatability of 100%, in comparison with conventional flotation obtaining floatability of about 40%. For galena and sphalerite, the optimum floc size was 38 µm and 45 µm, respectively. |
Rubio et al. (2007) [122] | Treatment of the copper/molybdenum sulfide ore (0.94% Cu and 0.05% Mo) using emulsified oil extender flotation. | Copper and Molybdenum recovery of fine (37–5 μm) and ultrafine (<5 μm) increased around 4% to 5% and 3% to 5% respectively as compared with a “standardized” mill laboratory procedure. |
Otsuki and Yue (2017) [36] | Adoption of CGA-assisted flotation to a complex gold ore | Higher gold recovery (94.33%) and grade (75.42 g/t) was achieved with the CGA process as compared with the recovery (92.44%) and grade (36.63 g/t) in flotation without CGA, especially in the fine particle fraction (between 38–53 µm). |
Arriagada et al. (2020) [123] | Use of hydrophobized glass bubbles (HGB) | HGB addition increased the flotation kinetics rate constant by 1.4 times and the maximum recovery from 64 to 90% (considering a first-order kinetics model). |
Farrokhpay et al. (2020) [124] | Use of nanobubbles | When microbubbles were used, much less collector (about half) was needed to achieve the same or even slightly higher recovery. The quartz flotation recovery increased from 88 to 92% with the use of microbubbles. |
Zhou et al. (2020) [125] | Use of nano-scale bubbles generated by hydrodynamic cavitation (HC) | The separation efficiencies of conventional flotation and flotation of ultra-fine coal pre-treated via HC increased from 2.62 to 3.62, respectively. |
Zhang et al. (2021) [126] | Use of nanobubbles | The rutile treated with nanobubbles showed higher recovery (93%) as compared with the conventional bubbles, i.e., 86%. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajjad, M.; Otsuki, A. Correlation between Flotation and Rheology of Fine Particle Suspensions. Metals 2022, 12, 270. https://doi.org/10.3390/met12020270
Sajjad M, Otsuki A. Correlation between Flotation and Rheology of Fine Particle Suspensions. Metals. 2022; 12(2):270. https://doi.org/10.3390/met12020270
Chicago/Turabian StyleSajjad, Mohsin, and Akira Otsuki. 2022. "Correlation between Flotation and Rheology of Fine Particle Suspensions" Metals 12, no. 2: 270. https://doi.org/10.3390/met12020270
APA StyleSajjad, M., & Otsuki, A. (2022). Correlation between Flotation and Rheology of Fine Particle Suspensions. Metals, 12(2), 270. https://doi.org/10.3390/met12020270