Insights into Poisoning Mechanism of Zr by First Principle Calculation on Adhesion Work and Adsorption Energy between TiB2, Al3Ti, and Al3Zr
Abstract
:1. Introduction
2. Computing Method
2.1. First Principle
2.2. Adhesion Work
2.3. Surface Energy
2.4. Adsorption Energy
3. Results and Discussion
3.1. Adhesion Work TiB2 (0001)//Al3Ti (112) and Al3Ti (112)//Al (111)
3.2. Adhesion Work TiB2-ZrB2 (0001)//Al3Ti (112) and TiB2-Ti2Zr (0001)//Al3Ti (112)
3.3. Adhesion Work Al3Ti (001)//Al3Zr (001) and Al3Ti (112)//Al3Zr (114)
3.4. Adhesion Work TiB2 (0001)//Al3Ti-Al3Zr (112) and TiB2 (0001)//Al3Zr (114)
3.5. Adhesion Work Al3Ti-Al3Zr (112)//Al (111) and Al3Zr (114)//Al (111)
3.6. Adhesion Work Al3Ti (001)//Al (001) and Al3Zr (001)//Al (001)
3.7. Adsorption Energy of Al on Al3Ti (001) or Al on Al3Zr (001)
3.8. Adsorption Energy of Al on Al3Ti (112) or Al on Al3Zr (114)
4. Conclusions
- (1)
- For the first kind of Zr poisoning guess, the adhesion work relationship between ZrB2 and Ti2Zr with Al3Ti (112) surface was calculated and the results showed lower values for ZrB2 and Ti2Zr than TiB2 and Al3Ti (112). The replacement of Ti by Zr revealed reduced binding of Al3Ti (112), but the reduction was not significant.
- (2)
- For the second kind of Zr poisoning guess, Al3Zr in Zr containing melt showed a high melting point and was precipitated as Al3Zr (001). The adhesion work between Al3Zr (001) and Al3Ti (001) was almost the same as that between TiB2 (0001) and Al3Ti (112), meaning that Al3Ti (001) would accumulate on the Al3Zr (001) surface as precipitates. This agreed well with the experimental results reported by Xiao et al. [18]. The adsorption energy of Al on Al3Ti (001) was only 1 / 5 ~ 1 / 4 of that of Al on Al3Ti (112), and the energy required to form Al (001) surface was higher than that required to form Al (111). Hence, Al3Zr (001) would compete with TiB2 (0001) to seize Al3Ti in the melt and then Al3Ti (001) crystallized on Al3Zr (001) surface. This seriously affected the condensation of Al, thereby reducing the probability of nucleation and producing Zr poisoning effect.
- (3)
- For the third kind of Zr poisoning guess, Zr acted on Al3Ti (112) of the TiB2 surface. The calculations showed higher adhesion work of TiB2//Al3Zr (114) than that of TiB2//Al3Ti (112). Thus, Al3Ti on the TiB2 surface may be replaced by Zr, and TiB2 could bind to Al3Zr. However, the calculated adhesion work and adsorption energy of the Al3Zr (114) surface to Al illustrated Al3Zr (114) surface with almost the same effect as Al3Ti (112). The adhesion work and adsorption energy were similar to those of Al3Ti (112). As a result, Zr may replace Ti, but its function remained the same as that of Ti without toxic effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mi, L.; Wang, J.J.; Hu, Z.L. The Research Progress of TiB2 Impacts on the Refin. Effect of Al-Ti-B Master Alloy. Appl. Mech. Mater. 2014, 3296, 391–395. [Google Scholar] [CrossRef]
- Wang, X.M.; Han, Q.Y. Grain Refinement Mechanism Of Aluminum by Al-Ti-B Master Alloys. In Proceedings of the Symposium on Light Metals Held during 145th The-Minerals-Metals-and-Materials-Society Annual Meeting and Exhibition, Nashville, TN, USA, 14–18 February 2016; pp. 189–193. [Google Scholar]
- Cibula, A. The grain refinement of aluminum alloy castings by additions of titaniumand boron. J. Inst. Met. 1951, 80, 1. [Google Scholar]
- Crossley, F.A.; Mondolfo, L.F. Mechanism of grain refinement in aluminum alloys. JOM 1951, 3, 1143–1148. [Google Scholar] [CrossRef]
- Guzowski, M.M.; Sigworth, G.K.; Sentner, D.A. Role of boron in the grain refinement of aluminum with titanium. Met. Trans. A (USA) 1987, 18a, 603–619. [Google Scholar] [CrossRef]
- Jones, G.P.; Pearson, J. Factors affecting the grain-refinement of aluminum using titanium and boron additives. Metall. Trans. B 1976, 7, 223–234. [Google Scholar] [CrossRef]
- Qi, W.J.; Wang, S.C.; Chen, X.M.; Nong, D.; Zhou, Z. Effective nucleation phase and grain refinement mechanism of Al-5Ti-1B alloy. China J. Rare Met. 2013, 37, 179. [Google Scholar]
- Fan, Z.; Wang, Y.; Zhang, Y.; Qin, T.; Zhou, X.R.; Thompson, G.E.; Pennycook, T.; Hashimoto, T. Grain refining mechanism in the Al/Al-Ti-B system. Acta Mater. 2015, 84, 292–304. [Google Scholar] [CrossRef]
- Schumacher, P.; Greer, A.L.; Worth, J.; Evans, P.V.; Kearns, M.A.; Fisher, P.; Green, A.H. New studies of nucleation mechanisms in aluminium alloys: Implications for grain refinement practice. Mater. Sci.Technol. 1998, 14, 394–404. [Google Scholar] [CrossRef]
- Mao, G.L.; Tong, G.Z.; Gao, W.L.; Liu, S.G.; Zhong, L.W. The poisoning effect of Sc or Zr in grain refinement of Al-Si-Mg alloy with Al-Ti-B. Mater. Lett. 2021, 302, 130428. [Google Scholar] [CrossRef]
- Johnsson, M. Influence of Zr on the grain refinement of aluminium. Metallkd 1994, 85, 786–789. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Krawczyk, J.; Janczuk, B. Wettability and Adhesion Work Prediction in the Polymer-Aqueous Solution of Surface Active Agent Systems. Colloids Interfaces 2018, 2, 21. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhou, H.; Zhang, K.F.; Zhang, Y.S.; Feng, X.G.; Gui, B.H. A First-principles Study of Adhesion and Electronic Structure at TiN(111)/DLC Interface. Rare Met. Mater. Eng. 2021, 50, 2017–2024. [Google Scholar]
- Liu, Y.; Huang, Y.C.; Xiao, Z.B.; Reng, X.W. Study of Adsorption of Hydrogen on Al, Cu, Mg, Ti Surfaces in Al Alloy Melt via First Principles Calculation. Metals 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.E. Surface interface and stacking fault energies of magnesium from first principles calculations. Surf. Sci. 2007, 601, 5762–5765. [Google Scholar] [CrossRef]
- Zeng, Q.Q.; Liu, Z.X.; Liang, W.F.; Ma, M.Y.; Deng, H.Q. A First-Principles Study on Na and O Adsorption Behaviors on Mo (110) Surface. Metals 2021, 11, 1322. [Google Scholar] [CrossRef]
- Liu, S.Y.; Jiao, X.Q.; Zhang, G.Y. First principle study of the adsorption of formaldehyde molecule on intrinsic and doped BN sheet. Chem. Phys. Lett. 2019, 726, 77–82. [Google Scholar] [CrossRef]
- Xiao, Z.B.; Deng, Y.L.; Tang, J.G.; Chen, Q.; Zhang, J.M. Poisoning mechanism of Zr on grain refiner of Al-Ti-C and Al-Ti-B. Chin. J. Nonferrous Met. 2012, 22, 371–379. [Google Scholar]
- Liu, Q.B.; Fan, G.; Tan, Z.; Li, Z.; Zhang, D.; Wang, J.; Zhang, H. Precipitation of Al3Zr by two-step homogenization and its effect on the recrystallization and mechanical property in 2195 Al-Cu-Li alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021, 821, 141637. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, C.M.; Zhou, L.; Hashimoto, T.; Zhou, X.; Ramasse, Q.M.; Fan, Z. Mechanism for Zr poisoning of Al-Ti-B based grain refiners. Acta Mater. 2019, 164, 428–439. [Google Scholar] [CrossRef] [Green Version]
Zr Poison Target | Toxic Products | Adhesion Work Calculation | Adsorption Energy Calculation |
---|---|---|---|
Not containing Zr in Aluminum melt | TiB2 (0001)//Al3Ti (112) | ||
Al3Ti (112)//Al (111) | Al3Ti (112) adsorbed Al | ||
TiB2 | ZrB2 | TiB2-ZrB2 (0001)//Al3Ti (112) | |
Ti2Zr | TiB2-Ti2Zr (0001)//Al3Ti (112) | ||
Free Al3Ti | (Al3Ti//Al3Zr) | Al3Ti (001)//Al3Zr (001) | |
Al3Ti (001)//Al (001) | Al3Ti (001) adsorbed Al | ||
Al3Zr (001)//Al (001) | Al3Zr (001) adsorbed Al | ||
Al3Ti (112)//Al3Zr (114) | |||
Al3Ti on TiB2 surface | (TiB2//Al3Zr) | TiB2 (0001)//Al3Ti-Al3Zr (112) | |
Al3Ti-Al3Zr (112)//Al (111) | |||
TiB2 (0001)//Al3Zr (114) | |||
Al3Zr (114)//Al (111) | Al3Zr (114) adsorbed Al |
Interfaces | Initial d (Å) | WAB (eV/Å2) | A (Å2) | Final d (Å) |
---|---|---|---|---|
TiB2 (0001)//Al3Ti (112) | 3 | −0.228 | 63.82 | 2.25 |
Al3Ti (112)//Al (111) | 3 | −0.139 | 55.39 | 2.31 |
Interfaces | Initial d (Å) | WAB (eV/Å2) | A (Å2) | Final d (Å) |
---|---|---|---|---|
TiB2-ZrB2 (0001)//Al3Ti (112) | 3 | −0.226 | 63.82 | 2.47 |
TiB2-Ti2Zr (0001)//Al3Ti (112) | 3 | −0.224 | 63.82 | 2.08 |
Interfaces | Initial d (Å) | WAB (eV/Å2) | A (Å2) | Final d (Å) |
---|---|---|---|---|
Al3Ti (001)//Al3Zr (001) | 3 | −0.223 | 61.00 | 2.28 |
Al3Ti (112)//Al3Zr (114) | 3 | −0.168 | 110.6 | 2.38 |
Interfaces | Initial d (Å) | WAB (eV/Å2) | A (Å2) | Final d (Å) |
---|---|---|---|---|
TiB2 (0001)//Al3Ti-Al3Zr (112) | 3 | −0.221 | 63.82 | 2.28 |
TiB2 (0001)//Al3Zr (114) | 3 | −0.255 | 110.6 | 2.22 |
Interfaces | Initial d (Å) | WAB (eV/Å2) | A (Å2) | Final d (Å) |
---|---|---|---|---|
Al3Ti-Al3Zr (112)//Al (111) | 3 | −0.141 | 55.39 | 2.36 |
Al3Zr (114)//Al (111) | 3 | −0.126 | 110.6 | 2.39 |
Interfaces | Initial d (Å) | WAB (eV/Å2) | A (Å2) | Final d (Å) |
---|---|---|---|---|
Al3Ti (001)//Al (001) | 3 | −0.140 | 58.98 | 2.08 |
Al3Zr (001)//Al (001) | 3 | −0.133 | 64.96 | 2.09 |
Surfaces | Initial Site | DAl-sur(Å) | Easd(eV) | Final Site |
---|---|---|---|---|
Al3Ti(001) | AlTop | 1.67 | −4.653 | AlTop |
TiTop | 2.34 | −4.258 | TiTop | |
Bridge | 1.63 | −4.650 | AlTop | |
Hollow | 1.85 | −4.664 | Hollow | |
Al3Zr(001) | AlTop | 1.96 | −3.848 | AlTop |
ZrTop | 2.96 | −2.303 | ZrTop | |
Bridge | 1.96 | −3.845 | AlTop | |
Hollow | 2.37 | −3.069 | Hollow |
Surface | Initial Site | DAl-sur(Å) | Easd(eV) | Final Site |
---|---|---|---|---|
Al3Ti(112) | AlTop | 1.565 | −23.202 | Hollow2 |
TiTop | 2.007 | −22.886 | Hollow1 | |
Bridge1 | 1.984 | −22.885 | Hollow1 | |
Bridge2 | 1.528 | −23.204 | Hollow2 | |
Bridge3 | 2.185 | −22.732 | Hollow2 | |
Hollow1 | 1.940 | −22.881 | Hollow1 | |
Hollow2 | 2.177 | −22.732 | Hollow2 |
Surface | Initial Site | DAl-sur(Å) | Easd(eV) | Final Site |
---|---|---|---|---|
Al3Zr(114) | AlTop | 1.391 | −23.058 | Hollow2 |
ZrTop | 2.169 | −22.153 | Hollow1 | |
Bridge1 | 2.188 | −22.175 | Bridge1 | |
Bridge2 | 1.364 | −23.695 | Hollow2 | |
Bridge3 | 1.418 | −22.056 | Hollow2 | |
Hollow1 | 2.219 | −22.156 | Hollow1 | |
Hollow2 | 1.427 | −23.695 | Hollow2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Ruan, Q.; Chen, S.; Meng, C.; Xu, Z.; Wei, C.; Tang, H.; Wang, J. Insights into Poisoning Mechanism of Zr by First Principle Calculation on Adhesion Work and Adsorption Energy between TiB2, Al3Ti, and Al3Zr. Metals 2022, 12, 286. https://doi.org/10.3390/met12020286
Wu J, Ruan Q, Chen S, Meng C, Xu Z, Wei C, Tang H, Wang J. Insights into Poisoning Mechanism of Zr by First Principle Calculation on Adhesion Work and Adsorption Energy between TiB2, Al3Ti, and Al3Zr. Metals. 2022; 12(2):286. https://doi.org/10.3390/met12020286
Chicago/Turabian StyleWu, Jianqiang, Qilin Ruan, Simin Chen, Chuanchao Meng, Zhengbing Xu, Chunhua Wei, Hongqun Tang, and Junsheng Wang. 2022. "Insights into Poisoning Mechanism of Zr by First Principle Calculation on Adhesion Work and Adsorption Energy between TiB2, Al3Ti, and Al3Zr" Metals 12, no. 2: 286. https://doi.org/10.3390/met12020286
APA StyleWu, J., Ruan, Q., Chen, S., Meng, C., Xu, Z., Wei, C., Tang, H., & Wang, J. (2022). Insights into Poisoning Mechanism of Zr by First Principle Calculation on Adhesion Work and Adsorption Energy between TiB2, Al3Ti, and Al3Zr. Metals, 12(2), 286. https://doi.org/10.3390/met12020286