A Two-Dimensional Phase-Field Investigation on Unidirectionally Solidified Tip-Splitting Microstructures
Abstract
:1. Introduction
2. Model Description
3. Results and Discussion
3.1. Tip-Splitting Microstructures
3.2. Effect of Groove Shape
3.3. Effect of Interfacial Anisotropy
3.4. Analytical Criterion for Tip Splitting
3.5. Comparison between Sharp-Interface Analytical Criterion and Phase-Field Simulation
3.6. Effect of Lattice Anisotropy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ihle, T.; Müller-Krumbhaar, H. Fractal and compact growth morphologies in phase transitions with diffusion transport. Phys. Rev. E 1994, 49, 2972. [Google Scholar] [CrossRef] [Green Version]
- Ben-Jacob, E.; Deutscher, G.; Garik, P.; Goldenfeld, N.D.; Lareah, Y. Formation of a dense branching morphology in interfacial growth. Phys. Rev. Lett 1986, 57, 1903. [Google Scholar] [CrossRef]
- Ben-Jacob, E.; Cohen, I.; Levine, H. Cooperative self-organization of microorganisms. Adv. Phys. 2000, 49, 395–554. [Google Scholar] [CrossRef]
- Saffman, P.G.; Taylor, G. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. R. Soc. 1958, 245, 312–329. [Google Scholar]
- Assadi, H.; Oghabi, M.; Herlach, D.M. Influence of ordering kinetics on dendritic growth morphology. Acta Mater. 2009, 57, 1639–1647. [Google Scholar] [CrossRef]
- Glicksman, M.E. Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Schaefer, R.; Glicksman, M. Initiation of dendrites by crystal imperfections. Metall. Trans. 1970, 1, 1973–1978. [Google Scholar] [CrossRef]
- Mullins, W.W.; Sekerka, R. Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 1964, 35, 444–451. [Google Scholar] [CrossRef]
- Mullins, W.W.; Sekerka, R.F. Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 1963, 34, 323–329. [Google Scholar] [CrossRef]
- Noël, N.; Jamgotchian, H.; Billia, B. In situ and real-time observation of the formation and dynamics of a cellular interface in a succinonitrile-0.5 wt% acetone alloy directionally solidified in a cylinder. J. Cryst. Growth 1997, 181, 117–132. [Google Scholar] [CrossRef]
- Morris, L.; Winegard, W. The development of cells during the solidification of a dilute Pb-Sb alloy. J. Cryst. Growth 1969, 5, 361–375. [Google Scholar] [CrossRef]
- Utter, B.; Ragnarsson, R.; Bodenschatz, E. Alternating tip splitting in directional solidification. Phys. Rev. Lett. 2001, 86, 4604–4607. [Google Scholar] [CrossRef] [Green Version]
- Nittmann, J.; Stanley, H.E. Tip splitting without interfacial tension and dendritic growth patterns. Nonlinear Phys. Beginners Fractals Chaos Solitons Pattern Form. Cell. Autom. Complex Syst. 1998, 321, 166. [Google Scholar]
- Akamatsu, S.; Faivre, G.; Ihle, T. Symmetry-broken double fingers and seaweed patterns in thin-film directional solidification of a nonfaceted cubic crystal. Phys. Rev. E 1995, 51, 4751. [Google Scholar] [CrossRef]
- Šebestíková, L.; D’Hernoncourt, J.; Hauser, M.; Müller, S.; De Wit, A. Flow-field development during finger splitting at an exothermic chemical reaction front. Phys. Rev. E 2007, 75, 026309. [Google Scholar] [CrossRef] [Green Version]
- Glicksman, M.E. Mechanism of dendritic branching. Metall. Mater. Trans. A 2012, 43, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Martin, O.; Goldenfeld, N. Origin of sidebranching in dendritic growth. Phys. Rev. A 1987, 35, 1382. [Google Scholar] [CrossRef]
- Devauchelle, O.; Szymczak, P.; Pecelerowicz, M.; Cohen, Y.; Seybold, H.J.; Rothman, D.H. Laplacian networks: Growth, local symmetry, and shape optimization. Phys. Rev. E 2017, 95, 033113. [Google Scholar] [CrossRef] [Green Version]
- Suekane, T.; Ono, J.; Hyodo, A.; Nagatsu, Y. Three-dimensional viscous fingering of miscible fluids in porous media. Phys. Rev. Fluids 2017, 2, 103902. [Google Scholar] [CrossRef]
- Mullis, A.M. Spontaneous deterministic side-branching behavior in phase-field simulations of equiaxed dendritic growth. J. Appl. Phys. 2015, 117, 114305. [Google Scholar] [CrossRef] [Green Version]
- Shang, S.; Guo, Z.; Han, Z. On the kinetics of dendritic sidebranching: A three dimensional phase field study. J. Appl. Phys. 2016, 119, 164305. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Yang, G. Phase-field investigation of effects of surface-tension anisotropy on deterministic sidebranching in solutal dendritic growth. Phys. Rev. E 2008, 78, 042601. [Google Scholar] [CrossRef] [PubMed]
- Jia-Xue, Y.; Zhi-Jun, W.; Jun-Jie, L.; Jin-Cheng, W. Tip-splitting instability in directional solidification based on bias field method. Chin. Phys. B 2015, 24, 078107. [Google Scholar]
- Glicksman, M.E. Capillary-mediated interface perturbations: Deterministic pattern formation. J. Cryst. Growth 2016, 450, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Nestler, B.; Garcke, H.; Stinner, B. Multicomponent alloy solidification: Phase-field modeling and simulations. Phys. Rev. E 2005, 71, 041609. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, A.; Nestler, B. Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential. Phys. Rev. E 2012, 85, 021602. [Google Scholar] [CrossRef]
- Laxmipathy, V.P.; Wang, F.; Selzer, M.; Nestler, B. Phase-field simulations of grain boundary grooving under diffusive-convective conditions. Acta Mater. 2021, 204, 116497. [Google Scholar] [CrossRef]
- Laxmipathy, V.P.; Wang, F.; Selzer, M.; Nestler, B. A two-dimensional phase-field study on dendritic growth competition under convective conditions. Comput. Mater. Sci. 2021, 186, 109964. [Google Scholar] [CrossRef]
- Provatas, N.; Wang, Q.; Haataja, M.; Grant, M. Seaweed to dendrite transition in directional solidification. Phys. Rev. Lett. 2003, 91, 155502. [Google Scholar] [CrossRef] [Green Version]
- Utter, B.; Bodenschatz, E. Dynamics of low anisotropy morphologies in directional solidification. Phys. Rev. E 2002, 66, 051604. [Google Scholar] [CrossRef] [Green Version]
- Laxmipathy, V.P.; Wang, F.; Selzer, M.; Nestler, B.; Ankit, K. Influence of melt convection on the morphological evolution of seaweed structures: Insights from phase-field simulations. Comput. Mater. Sci. 2019, 170, 109196. [Google Scholar] [CrossRef]
- Coriell, S.; Sekerka, R. Morphological stability near a grain boundary groove in a solid-liquid interface during solidification of a binary alloy. J. Cryst. Growth 1973, 19, 285–293. [Google Scholar] [CrossRef]
- Dantzig, J.; Di Napoli, P.; Friedli, J.; Rappaz, M. Dendritic growth morphologies in Al-Zn alloys—Part II: Phase-field computations. Metall. Mater. Trans. A 2013, 44, 5532–5543. [Google Scholar] [CrossRef]
- Kessler, D.A.; Koplik, J.; Levine, H. Geometrical models of interface evolution. II. Numerical simulation. Phys. Rev. A 1984, 30, 3161. [Google Scholar] [CrossRef]
- Brower, R.C.; Kessler, D.A.; Koplik, J.; Levine, H. Geometrical models of interface evolution. Phys. Rev. A 1984, 29, 1335–1342. [Google Scholar] [CrossRef]
- Voorhees, P.; Coriell, S.; McFadden, G.; Sekerka, R. The effect of anisotropic crystal-melt surface tension on grain boundary groove morphology. J. Cryst. Growth 1984, 67, 425–440. [Google Scholar] [CrossRef]
- Cahn, J.; Hoffman, D. A vector thermodynamics for anisotropic surfaces—II. Curved and faceted surfaces. Acta Metall. 1974, 22, 1205–1214. [Google Scholar] [CrossRef]
Description | Parameter | Value |
---|---|---|
Partition coefficient | k | 0.25 |
Discretized grid space | = | m |
Domain size | ||
Interface width | m | |
Melt supersaturation | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laxmipathy, V.P.; Wang, F.; Selzer, M.; Nestler, B. A Two-Dimensional Phase-Field Investigation on Unidirectionally Solidified Tip-Splitting Microstructures. Metals 2022, 12, 376. https://doi.org/10.3390/met12030376
Laxmipathy VP, Wang F, Selzer M, Nestler B. A Two-Dimensional Phase-Field Investigation on Unidirectionally Solidified Tip-Splitting Microstructures. Metals. 2022; 12(3):376. https://doi.org/10.3390/met12030376
Chicago/Turabian StyleLaxmipathy, V. Pavan, Fei Wang, Michael Selzer, and Britta Nestler. 2022. "A Two-Dimensional Phase-Field Investigation on Unidirectionally Solidified Tip-Splitting Microstructures" Metals 12, no. 3: 376. https://doi.org/10.3390/met12030376
APA StyleLaxmipathy, V. P., Wang, F., Selzer, M., & Nestler, B. (2022). A Two-Dimensional Phase-Field Investigation on Unidirectionally Solidified Tip-Splitting Microstructures. Metals, 12(3), 376. https://doi.org/10.3390/met12030376