Ti-6Al-4V Octet-Truss Lattice Structures under Bending Load Conditions: Numerical and Experimental Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Model Description
2.2. Specimen Manufacturing
2.2.1. Material Details
2.2.2. Specimens Description
- Lattice structure specimens without outer skins (Type01)
- Lattice structure specimens with outer skins (Type02)
2.2.3. Manufacturing Process Description
- (1)
- “Ti6Al4V-PreHeat-50μm”: process theme that control the phase of preheating of the whole powder bed.
- (2)
- “Ti6Al4V-Melt-50μm”: process theme used for the realization of the solid part of the specimen (outer skins).
- (3)
- “Ti6Al4V-Net-50μm”: process theme used for the realization of the lattice part of the specimen (lattice core).
3. Considerations on the Trusses’ Diameter
4. Results and Discussion
4.1. Specimens Type01—Without Skins
4.2. Specimens Type02—With Outer Skins
5. Conclusions
- The mechanical properties are not constant within the trusses’ section. It is thus possible that the outer regions (a sort of skin of the trusses) have degraded properties;
- Small amount of not-fully synthesized powder and therefore not removed during post-process operations may have affected the mass measurement;
- The trusses’ cross-sections are not constant along the entire truss span (geometrical tolerances). The pinching areas act as stress concentrators, and have lower stiffness;
- A widespread and non-homogenous defect status (which could include the porosity too) could lead to a localized reduction of the mechanical characteristics but does not affect the global mass measurement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maskery, I.; Aboulkhair, N.T.; Aremu, A.O.; Tuck, C.J.; Ashcroft, I.A.; Wildman, R.D.; Hague, R. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Mater. Sci. Eng. A 2016, 670, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Bellini, C.; Borrelli, R.; Di Cocco, V.; Franchitti, S.; Iacoviello, F.; Sorrentino, L. Bending properties of titanium lattice structures produced by EBM process. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 1961–1970. [Google Scholar] [CrossRef]
- Bellini, C.; Borrelli, R.; Di Cocco, V.; Franchitti, S.; Iacoviello, F.; Sorrentino, L. Damage analysis of Ti6Al4V lattice structures manufactured by electron beam melting process subjected to bending load. Mater. Des. Process. Commun. 2021, 3, e223. [Google Scholar] [CrossRef]
- Liu, L.; Kamm, P.H.; García-Moreno, F.; Banhart, J.; Pasini, D. Elastic and failure response of imperfect three-dimensional metallic lattices: The role of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids 2017, 107, 160–184. [Google Scholar] [CrossRef]
- Bellini, C.; Borrelli, R.; Di Cocco, V.; Franchitti, S.; Iacoviello, F.; Sorrentino, L. Titanium lattice structures manufactured by EBM process: Effect of skin material on bending characteristics. Eng. Fract. Mech. 2021, 260, 108180. [Google Scholar] [CrossRef]
- Dong, G.; Tang, Y.; Zhao, Y.F. A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing. J. Mech. Des. 2017, 139, 100906. [Google Scholar] [CrossRef]
- Epasto, G.; Palomba, G.; D’Andrea, D.; Guglielmino, E.; Di Bella, S.; Traina, F. Ti-6Al-4V ELI microlattice structures manufactured by electron beam melting: Effect of unit cell dimensions and morphology on mechanical behaviour. Mater. Sci. Eng. A 2019, 753, 31–41. [Google Scholar] [CrossRef]
- Mahbod, M.; Asgari, M. Elastic and plastic characterization of a new developed additively manufactured functionally graded porous lattice structure: Analytical and numerical models. Int. J. Mech. Sci. 2019, 155, 248–266. [Google Scholar] [CrossRef]
- Bellini, C.; Borrelli, R.; Di Cocco, V.; Franchitti, S.; Iacoviello, F.; Mocanu, L.P.; Sorrentino, L. Failure energy and stiffness of titanium lattice specimens produced by electron beam melting process. Mater. Des. Process. Commun. 2021, 3, e268. [Google Scholar] [CrossRef]
- Bellini, C.; Borrelli, R.; Di Cocco, V.; Franchitti, S.; Iacoviello, F.; Sorrentino, L. Potentiality of hybrid structures in CFRP and additive manufactured metal octet-truss lattice. Procedia Struct. Integr. 2020, 28, 667–674. [Google Scholar] [CrossRef]
- Ashby, M. Hybrid Materials to Expand the Boundaries of Material-Property Space. J. Am. Ceram. Soc. 2011, 94, s3–s14. [Google Scholar] [CrossRef]
- Ashby, M. Designing architectured materials. Scr. Mater. 2013, 68, 4–7. [Google Scholar] [CrossRef]
- Fleck, N.A.; Deshpande, V.S.; Ashby, M.F. Micro-architectured materials: Past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 2495–2516. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Ashby, M.F.; Fleck, N.A. Foam topology: Bending versus stretching dominated architectures. Acta Mater. 2001, 49, 1035–1040. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Fleck, N.A.; Ashby, M.F. Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 2001, 49, 1747–1769. [Google Scholar] [CrossRef] [Green Version]
- Del Guercio, G.; Galati, M.; Saboori, A.; Fino, P.; Iuliano, L. Microstructure and Mechanical Performance of Ti–6Al–4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review. Acta Met. Sin. (Engl. Lett.) 2020, 33, 183–203. [Google Scholar] [CrossRef] [Green Version]
- Echeta, I.; Feng, X.; Dutton, B.; Leach, R.; Piano, S. Review of defects in lattice structures manufactured by powder bed fusion. Int. J. Adv. Manuf. Technol. 2020, 106, 2649–2668. [Google Scholar] [CrossRef] [Green Version]
- Bellini, C.; Berto, F.; Di Cocco, V.; Iacoviello, F.; Mocanu, L.P.; Razavi, J. Additive manufacturing processes for metals and effects of defects on mechanical strength: A review. Procedia Struct. Integr. 2021, 33, 498–508. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Razavi, S.; Bordonaro, G.; Ferro, P.; Torgersen, J.; Berto, F. Porosity effect on tensile behavior of Ti-6Al-4V specimens produced by laser engineered net shaping technology. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 1930–1937. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.R.; Sugar, J.D.; Schoenung, J.; Marchi, C.S. Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel. Mater. Sci. Eng. A 2019, 765, 138268. [Google Scholar] [CrossRef]
- Barriobero-Vila, P.; Vallejos, J.M.; Gussone, J.; Haubrich, J.; Kelm, K.; Stark, A.; Schell, N.; Requena, G. Interface-Mediated Twinning-Induced Plasticity in a Fine Hexagonal Microstructure Generated by Additive Manufacturing. Adv. Mater. 2021, 33, 2105096. [Google Scholar] [CrossRef]
- Hernández-Nava, E.; Smith, C.J.; Derguti, F.; Tammas-Williams, S.; Léonard, F.; Withers, P.J. The effect of defects on the mechanical response of Ti-6Al-4V cubic lattice structures fabricated by electron beam melting. Acta Mater. 2016, 108, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Ferrigno, A.; Di Caprio, F.; Borrelli, R.; Auricchio, F.; Vigliotti, A. The mechanical strength of Ti-6Al-4V columns with regular octet microstructure manufactured by electron beam melting. Materialia 2019, 5, 100232. [Google Scholar] [CrossRef]
- Cheah, C.-M.; Chua, C.-K.; Leong, K.-F.; Cheong, C.-H.; Naing, M.-W. Automatic Algorithm for Generating Complex Polyhedral Scaffold Structures for Tissue Engineering. Tissue Eng. 2004, 10, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Cheah, C.; Chua, C.; Leong, K.; Chua, S. Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 1: Investigation and Classification. Int. J. Adv. Manuf. Technol. 2003, 21, 291–301. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, H.; Guedes, J.; Bendsoe, M. Hierarchical optimization of material and structure. Struct. Multidiscip. Optim. 2002, 24, 1–10. [Google Scholar] [CrossRef]
- Huang, X.; Radman, A.; Xie, Y.M. Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput. Mater. Sci. 2011, 50, 1861–1870. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, J.H.; Zhang, W.H.; Li, S.Y.; Kong, J. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures. Struct. Multidiscip. Optim. 2018, 58, 35–50. [Google Scholar] [CrossRef]
- Chen, W.; Tong, L.; Liu, S. Concurrent topology design of structure and material using a two-scale topology optimization. Comput. Struct. 2017, 178, 119–128. [Google Scholar] [CrossRef]
- Hassani, B.; Hinton, E. A review of homogenization and topology I—Homogenization theory for media with periodic structure. Comput. Struct. 1998, 69, 707–717. [Google Scholar] [CrossRef]
- Hassani, B.; Hinton, E. A review of homogenization and topology optimization II-analytical and numerical solution of homogenization equations. Comput. Struct. 1998, 69, 719–738. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, X.; Liu, S. Finite-Element-Mesh Based Method for Modeling and Optimization of Lattice Structures for Additive Manufacturing. Materials 2018, 11, 2073. [Google Scholar] [CrossRef] [Green Version]
- Rosen, D.W. Computer-Aided Design for Additive Manufacturing of Cellular Structures. Comput. Des. Appl. 2007, 4, 585–594. [Google Scholar] [CrossRef]
- Zhang, Y.; Bernard, A.; Gupta, R.K.; Harik, R. Evaluating the Design for Additive Manufacturing: A Process Planning Perspective. Procedia CIRP 2014, 21, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Di Caprio, F.; Acanfora, V.; Franchitti, S.; Sellitto, A.; Riccio, A. Hybrid Metal/Composite Lattice Structures: Design for Additive Manufacturing. Aerospace 2019, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Franchitti, S.; Pirozzi, C.; Borrelli, R. Influence of hot isostatic pressing and surface finish on the mechanical behaviour of Ti6Al4V processed by electron beam melting. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2828–2841. [Google Scholar] [CrossRef]
- Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016, 61, 361–377. [Google Scholar] [CrossRef] [Green Version]
- ARCAM, Arcam A2X—For Aerospace Production and Materials R&D. 2018. Available online: http://www.arcam.com/wp-content/uploads/arcam-a2x.pdf (accessed on 1 January 2022).
- Neira-Arca, A. Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys. Ph.D. Thesis, North Carolina State University, Raaleigh, NC, USA, 2012. [Google Scholar]
Density (g/cm3) | Young Modulus (MPa) | Poisson Ratio | Yield Stress (MPa) | Tangential Modulus (MPa) | Ultimate Strain (%) |
---|---|---|---|---|---|
4.4 | 104,800 | 0.33 | 857 | 2900 (from εyield up to ε = 0.04) 0 (from ε = 0.04 up to failure) | 7.4 |
Chemical Element | % | Required % ASTM F2924 |
---|---|---|
Al | 6.40 | 5.50–6.75 |
V | 4.12 | 3.50–4.50 |
Fe | 0.18 | <0.30 |
O | 0.14 | <0.20 |
N | 0.01 | <0.05 |
H | 0.003 | <0.015 |
C | 0.01 | <0.08 |
Ti | Balance | Balance |
Configuration IDs | Truss Diameter (mm) | FE Model (1D) (g) | CAD (g) | Extra Mass (g) | Difference (%) |
---|---|---|---|---|---|
Config 01 | 1.0 | 118.758 | 90.076 | 28.682 | 31.842 |
Config 02 | 0.9 | 96.194 | 75.285 | 20.909 | 27.773 |
Config 03 | 0.8 | 76.005 | 61.320 | 14.685 | 23.948 |
Config 04 | 0.7 | 58.192 | 48.354 | 9.838 | 20.346 |
Config 05 | 0.6 | 42.753 | 36.558 | 6.195 | 16.947 |
Config 06 | 0.5 | 29.690 | 26.104 | 3.585 | 13.735 |
Case ID | Mass (g) | Diameter (mm) | Max Load (N) | Diplacement @ Max Load (mm) | Stiffness (N/mm) | Mass Error (%) | Load Error (%) | Disp Error (%) | Stiffness Error (%) |
---|---|---|---|---|---|---|---|---|---|
Experimental | 63.81 | - | 486.00 | 17.69 | 30.00 | - | - | - | - |
Num-T01-01 (Nominal) | 90.08 | 1.000 | 915.36 | 18.40 | 52.35 | 41.16 | 88.35 | 3.99 | 74.49 |
Num-T01-02 | 75.29 | 0.900 | 731.26 | 18.32 | 41.62 | 17.98 | 50.46 | 3.54 | 38.74 |
Num-T01-03 | 61.32 | 0.800 | 567.21 | 18.16 | 32.31 | −3.90 | 16.71 | 2.61 | 7.70 |
Num-T01-04 | 48.35 | 0.700 | 428.62 | 17.71 | 24.33 | −24.22 | −11.81 | 0.09 | −18.89 |
Num-T01−05 | 36.56 | 0.600 | 309.13 | 17.63 | 17.61 | −42.71 | −36.39 | −0.35 | −41.30 |
Num-T01−06 | 26.10 | 0.500 | 214.25 | 17.47 | 12.07 | −59.09 | −55.92 | −1.30 | −59.77 |
Num-T01−07 | 63.81 | 0.818 | 602.56 | 18.31 | 33.91 | 0.00 | 23.98 | 3.49 | 13.04 |
Num-T01−08 | 57.32 | 0.770 | 502.25 | 17.73 | 29.78 | −10.17 | 3.34 | 0.21 | −0.73 |
Case ID | Mass (g) | Diameter (mm) | Skin Th (mm) | Max Load (N) | Dip @ Max Load (mm) | Stiffness (N/mm) | Mass Error (%) | Load Error (%) | Disp Error (%) | Stiffness Error (%) |
---|---|---|---|---|---|---|---|---|---|---|
Experimental | 96.88 | - | - | 3050.25 | 10.10 | 383.83 | - | - | - | - |
Num-T01-01 (Nominal) | 117.83 | 1.00 | 0.600 | 4254.56 | 11.01 | 561.60 | 37.12 | 39.48 | 9.09 | 46.31 |
Num-T02-02 | 100.09 | 0.77 | 0.600 | 3815.16 | 9.75 | 526.58 | 3.31 | 25.08 | −3.40 | 37.19 |
Num-T02-03 | 92.96 | 0.77 | 0.500 | 3285.00 | 9.90 | 440.24 | −4.05 | 7.70 | −1.94 | 14.69 |
Num-T02-04 | 85.83 | 0.77 | 0.400 | 2691.29 | 10.21 | 356.24 | −11.41 | −11.77 | 1.18 | −7.19 |
Num-T02-05 | 88.40 | 0.77 | 0.436 | 3038.16 | 10.16 | 384.02 | −8.76 | −0.40 | 0.62 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Caprio, F.; Franchitti, S.; Borrelli, R.; Bellini, C.; Di Cocco, V.; Sorrentino, L. Ti-6Al-4V Octet-Truss Lattice Structures under Bending Load Conditions: Numerical and Experimental Results. Metals 2022, 12, 410. https://doi.org/10.3390/met12030410
Di Caprio F, Franchitti S, Borrelli R, Bellini C, Di Cocco V, Sorrentino L. Ti-6Al-4V Octet-Truss Lattice Structures under Bending Load Conditions: Numerical and Experimental Results. Metals. 2022; 12(3):410. https://doi.org/10.3390/met12030410
Chicago/Turabian StyleDi Caprio, Francesco, Stefania Franchitti, Rosario Borrelli, Costanzo Bellini, Vittorio Di Cocco, and Luca Sorrentino. 2022. "Ti-6Al-4V Octet-Truss Lattice Structures under Bending Load Conditions: Numerical and Experimental Results" Metals 12, no. 3: 410. https://doi.org/10.3390/met12030410
APA StyleDi Caprio, F., Franchitti, S., Borrelli, R., Bellini, C., Di Cocco, V., & Sorrentino, L. (2022). Ti-6Al-4V Octet-Truss Lattice Structures under Bending Load Conditions: Numerical and Experimental Results. Metals, 12(3), 410. https://doi.org/10.3390/met12030410