Shear Localization and Mechanical Properties of Cu/Ta Metallic Nanolayered Composites: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Computational Details
2.1. Interatomic Potential
2.2. Molecular Dynamics Model
3. Results
4. Conclusions
- (1)
- The compressive strength of Cu/Ta MNCs increases with decreasing thickness up to a critical thickness of 2.5 nm, below which softening begins. This is attributed to the formation of shear localization. Moreover, the compressive strength increases with decreasing temperature;
- (2)
- The geometry analysis of the slip system and the evolution of defects at the atomic level indicate that asymmetry of dislocation transmission across interfaces causes interface rotation, activating dislocations parallel to the interface to glide beyond the distance of individual layer thicknesses, and eventually forming shear bands;
- (3)
- The plastic deformation above hC is dominated by dislocation sliding, while the plastic strain in the shear band region below hC is dominated by interfacial rotation and sliding;
- (4)
- The dislocation density is higher with lower layer thickness and temperature, but the shear band formation reduces dislocation density;
- (5)
- The transformation of local lattice regions into amorphous shear band regions results in more face-centered cubic and body-centered cubic structures transformed into amorphous phases for samples below hC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, S.; Beyerlein, I.J.; Carpenter, J.S.; Kang, K.; Wang, J.; Han, W.; Mara, N.A. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 2013, 4, 1696. [Google Scholar] [CrossRef] [Green Version]
- Beyerlein, I.J.; Demkowicz, M.J.; Misra, A.; Uberuaga, B.P. Defect-interface interactions. Prog. Mater. Sci. 2015, 74, 125–210. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Misra, A. An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 2011, 15, 20–28. [Google Scholar] [CrossRef]
- Jarmakani, H.N. Quasi-Isentropic and Shock Compression of FCC and BCC Metals: Effects of Grain Size and Stacking-Fault Energy. Ph.D. Thesis, University of California, San Diego, CA, USA, 2008. [Google Scholar]
- Qu, R.; Wu, S.J.; Wang, S.G.; Wang, X.D.; Zhang, Z.F. Shear banding stability and fracture of metallic glass: Effect of external confinement. J. Mech. Phys. Solids 2020, 138, 103922. [Google Scholar] [CrossRef]
- Zhao, L.; Han, D.X.; Guan, S.; Lu, X.; Chan, K.; Wang, G. Simultaneous improvement of plasticity and strength of metallic glasses by tailoring residual stress: Role of stress gradient on shear banding. Mater. Des. 2021, 197, 109246. [Google Scholar] [CrossRef]
- Nekouie, V.; Doak, S.; Roy, A.; Kühn, U.; Silberschmidt, V.V. Experimental studies of shear bands in Zr-Cu metallic glass. J. Non-Cryst. Solids 2018, 484, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Yang, G.N.; Shao, Y.; Yao, K.F. The effect of void defects on the shear band nucleation of metallic glasses. Intermetallics 2018, 94, 114–118. [Google Scholar] [CrossRef]
- Ikeda, Y.; Mancias, J.; Gan, B.; Maaß, R. Evidence of room-temperature shear-deformation in a Cu-Al intermetallic. Scr. Mater. 2021, 190, 126–130. [Google Scholar] [CrossRef]
- Zheng, S.J.; Wang, J.; Carpenter, J.S. Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 2014, 79, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hoagland, R.G.; Liu, X.Y.; Misra, A. The influence of interface shear strength on the glide dislocation—Interface interactions. Acta Mater. 2011, 59, 3164–3173. [Google Scholar] [CrossRef]
- Li, X.; Luo, X.M.; Zhang, G.P. Dislocation-dominated non-crystallographic rotation in shear bands of Cu/Au nanolayered composites. Mater. Lett. 2018, 226, 67–70. [Google Scholar] [CrossRef]
- Chen, Y.; Li, N.; Hoagland, R.G.; Liu, X.-Y.; Baldwin, J.K. Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers. Acta Mater. 2020, 199, 593–601. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Mara, N.A.; Dickerson, P.; Hoagland, R.G.; Misra, A. Transmission electron microscopy study of the deformation behaviorof Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation. J. Mater. Res. 2009, 24, 1291–1302. [Google Scholar] [CrossRef]
- Cui, Y.; Derby, B.; Li, N.; Mara, N.A.; Misra, A. Suppression of shear banding in high-strength Cu/Mo nanocomposites with hierarchical bicontinuous intertwined structures. Mater. Res. Lett. 2018, 6, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Huang, P.; Xu, M.; Lu, T.; Xu, K. Shear banding deformation in Cu/Ta nano-multilayers. Mater. Sci. Eng. A 2011, 528, 7290–7294. [Google Scholar] [CrossRef]
- Wynn, T.A.; Bhattacharyya, D.; Hammon, D.L.; Misra, A.; Mara, N.A. Large strain deformation of bimodal layer thickness Cu/Nb nanolamellar composites. Mater. Sci. Eng. A 2013, 564, 213–217. [Google Scholar] [CrossRef]
- Zhu, X.; Luo, J.; Zeng, F.; Pan, F. Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers. Thin Solid Film. 2011, 520, 818–823. [Google Scholar] [CrossRef]
- Zhou, J.; Averback, R.S.; Bellon, P. Stability and amorphization of Cu–Nb interfaces during severe plastic deformation: Molecular dynamics simulations of simple shear. Acta Mater. 2014, 73, 116–127. [Google Scholar] [CrossRef]
- Lv, C.; Yang, J.; Zhang, X.P. Interfacial effect on deformation and failure of Al/Cu nanolaminates under shear loading. J. Phys. D Appl. Phys. 2018, 51, 335301. [Google Scholar] [CrossRef]
- Zhang, J.S.; Hartmaier, A.; Wei, Y.J. Mechanisms of anisotropic friction in nanotwinned Cu revealed by atomistic simulations. Model. Simul. Mater. Sci. Eng. 2013, 21, 065001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.F.; Germann, T.C.; Liu, X.-Y.; Wang, J.; Beyerlein, I.J. Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater. 2014, 79, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Mathaudhu, S.N.; Thadhani, N.; Dongare, A.M. Correlations between dislocation density evolution and spall strengths of Cu/Ta multilayered systems at the atomic scales: The role of spacing of KS interfaces. Materialia 2019, 5, 100192. [Google Scholar] [CrossRef]
- Weng, S.Y.; Ning, H.M.; Hu, N.; Yan, C. Strengthening effects of twin interface in Cu/Ni multilayer thin films—A molecular dynamics study. Mater. Des. 2016, 111, 1–8. [Google Scholar] [CrossRef]
- Bejaud, R.; Durinck, J.; Brochard, S. Twin-interface interactions in nanostructured Cu/Ag: Molecular dynamics study. Acta Mater. 2018, 144, 314–324. [Google Scholar] [CrossRef]
- Feng, S.D.; Li, L.; Chan, K.C.; Qi, L. Control of shear band dynamics in Cu50Zr50metallic glass by introducing amorphous-crystalline interfaces. J. Alloys Compd. 2019, 770, 896–905. [Google Scholar] [CrossRef]
- Sterwerf, C.; Kaub, T.; Deng, C.; Thompson, G.B.; Li, L. Deformation mode transitions in amorphous-Cu45Zr55/crystalline-Cu multilayers. Thin Solid Film. 2017, 626, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Vardanyan, V.H.; Avila, K.E.; Küchemann, S.; Urbassek, H.M. Interaction of dislocations and shear bands in cutting of an amorphous-crystalline bilayer: An atomistic study. Comput. Mater. Sci. 2021, 192, 110379. [Google Scholar] [CrossRef]
- Zeng, L.F.; Gao, R.; Fang, Q.F.; Wang, X.P.; Xie, Z.M. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater. 2016, 110, 341–351. [Google Scholar] [CrossRef]
- Wei, M.Z.; Cao, Z.H.; Shi, J.; Pan, G.J. Anomalous plastic deformation in nanoscale Cu/Ta multilayers. Mater. Sci. Eng. A 2014, 598, 355–359. [Google Scholar] [CrossRef]
- Lu, L.; Huang, C.; Pi, W.L.; Xiang, H.G.; Gao, F.S. Molecular dynamics simulation of effects of interface imperfections and modulation periods on Cu/Ta multilayers. Comput. Mater. Sci. 2018, 143, 63–70. [Google Scholar] [CrossRef]
- Tran, A.S. Phase transformation and interface fracture of Cu/Ta multilayers: A molecular dynamics study. Eng. Fract. Mech. 2020, 239, 10729. [Google Scholar] [CrossRef]
- Daw, M.S.; Baskes, M.I. Embedded-atom metho—Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 1984, 29, 6443–6453. [Google Scholar] [CrossRef] [Green Version]
- Mishin, Y.; Asta, M.; Li, J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater. 2010, 58, 1117–1151. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.W.; Johnson, R.A.; Wadley, H.N.G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 2004, 69, 10. [Google Scholar] [CrossRef] [Green Version]
- Abraham, F.F. Computational statistical mechanics methodology, applications and supercomputing. Adv. Phys. 1986, 35, 1–111. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 2012, 20, 045021. [Google Scholar] [CrossRef]
- Wang, J.; Hoagland, R.G.; Hirth, J.P.; Misra, A. Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater. 2008, 56, 5685–5693. [Google Scholar] [CrossRef]
- Dong, S.J.; Chen, T.J.; Huang, S.X.; Li, N.; Zhou, C.Z. Thickness-dependent shear localization in Cu/Nb metallic nanolayered composites. Scr. Mater. 2020, 187, 323–328. [Google Scholar] [CrossRef]
- Shimizu, F.; Ogata, S.; Li, J. Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 2007, 48, 2923–2927. [Google Scholar] [CrossRef] [Green Version]
Interface | Constituent | Lx | Ly | Lz | Box Size |
---|---|---|---|---|---|
KS{1 1 1}<1 1 0>Cu||{1 1 0}<1 1 1>Ta | Cu layer | 114 [0 1 −1] | 64 [−2 1 1] | [1 1 1] | 291 × 283 × 325 Å3 |
Ta layer | 102 [−1 1 −1] | 35 [−2 −1 1] | [0 1 1] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, J.; Hu, J.; Huang, S.; Sun, Y.; Zhu, Y.; Shen, Q.; Luo, G. Shear Localization and Mechanical Properties of Cu/Ta Metallic Nanolayered Composites: A Molecular Dynamics Study. Metals 2022, 12, 421. https://doi.org/10.3390/met12030421
Wang C, Wang J, Hu J, Huang S, Sun Y, Zhu Y, Shen Q, Luo G. Shear Localization and Mechanical Properties of Cu/Ta Metallic Nanolayered Composites: A Molecular Dynamics Study. Metals. 2022; 12(3):421. https://doi.org/10.3390/met12030421
Chicago/Turabian StyleWang, Chuanbin, Junjie Wang, Jianian Hu, Shanglin Huang, Yi Sun, Youlin Zhu, Qiang Shen, and Guoqiang Luo. 2022. "Shear Localization and Mechanical Properties of Cu/Ta Metallic Nanolayered Composites: A Molecular Dynamics Study" Metals 12, no. 3: 421. https://doi.org/10.3390/met12030421
APA StyleWang, C., Wang, J., Hu, J., Huang, S., Sun, Y., Zhu, Y., Shen, Q., & Luo, G. (2022). Shear Localization and Mechanical Properties of Cu/Ta Metallic Nanolayered Composites: A Molecular Dynamics Study. Metals, 12(3), 421. https://doi.org/10.3390/met12030421