Use of Alternative Water Resources in Copper Leaching Processes in Chilean Mining Industry—A Review
Abstract
:1. Introduction
2. Water Consumption in Chilean Mining
3. Seawater
- ○
- The presence of salts in seawater influences the properties of the system and affects metallurgical efficiency [34].
- ○
- It can produce fouling in the equipment, plugging of pipes, and/or precipitation of salts [35].
- ○
- Development of algae and microalgae in the equipment and pipes of the facilities, which introduces unwanted material to the process [36].
- ○
- ○
- Corrosion of the equipment due to the high concentration of chlorides. This implies adopting mitigation strategies, which translates into high investment capital and a higher maintenance cost due to corrosion [41].
- ○
- High cost in transportation since most companies are at a great height with respect to sea level, which translates into a higher cost in infrastructure and energy [42].
- ○
- Desalination through evaporation or filtration equipment using high-pressure membranes to remove salts.
- ○
- Add sodium hypochlorite, produce chlorine gas by electrolysis, use ultraviolet light, among others, to remove organic material.
- ○
- Use special anti-corrosion materials such as carbon steel, coated steel, HDPE (high-density polyethylene), FRP (fiberglass reinforced plastic).
- It must first be collected from the shore;
- Then, it is pretreated (desalinated) (this option depends on the process of the mining site);
- Subsequently, it is transported by pumping systems;
- Moreover, finally, it is used in the process of the mining company.
4. Discard Water
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hossain, M.Z. Water: The Most Precious Resource of Our Life. Glob. J. Adv. Res. 2015, 2, 1436–1445. [Google Scholar]
- Kirk Cochran, J. Oceanography. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2014; Volume 142, pp. 418–421. ISBN 9780124095489. [Google Scholar]
- Torres Albornoz, D.A. Copper and Manganese Extraction Through Leaching Processes; Universidad Politécnica de Cartagena: Cartagena, Spain, 2021. [Google Scholar]
- Cisternas, L.A.; Gálvez, E.D. The use of seawater in mining. Miner. Process. Extr. Metall. Rev. 2018, 39, 18–33. [Google Scholar] [CrossRef]
- Toro, N.; Pérez, K.; Saldaña, M.; Jeldres, R.I.; Jeldres, M.; Cánovas, M. Dissolution of pure chalcopyrite with manganese nodules and waste water. J. Mater. Res. Technol. 2019, 9, 798–805. [Google Scholar] [CrossRef]
- Leal Filho, W.; Azul, A.M.; Brandli, L.; Özuyar, P.G.; Wall, T. Responsible Consumption and Production; Encyclopedia of the UN Sustainable Development Goals; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-319-95725-8. [Google Scholar]
- Valavanidis, A. “Blue Planet” Is Expected to Experience Severe Water Shortages? 2019. Available online: http://chem-tox-ecotox.org/blue-planet-is-expected-to-experience-severe-water-shortages-how-climate-change-and-rising-temperatures-are-threatening-the-global-water-cycle-on-earth/ (accessed on 1 October 2021).
- Halmaghi, E.-E.; Moşteanu, D. Considerations on Sustainable Water Resources Management. Int. Conf. Knowl. Based Organ. 2019, 25, 236–240. [Google Scholar] [CrossRef] [Green Version]
- Linton, J.; Budds, J. The hydrosocial cycle: Defining and mobilizing a relational-dialectical approach to water. Geoforum 2014, 67, 170–180. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, climate and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [Green Version]
- Kamojjala, S. World Environmental and Water Resources Congress 2018: Hydraulics and Waterways, Water Distribution Systems Analysis, and Smart Water; American Society of Civil Engineers: Reston, VA, USA, 2018; ISBN 9780784481424. [Google Scholar]
- Balasubramanian, A. The World ’ S Water Crisis. Res. Gate 2015, 44, 1–14. [Google Scholar]
- Alsharhan, A.S.; Rizk, Z.E. Water Resources and Integrated Management of the United Arab Emirates; Springer Nature: Berlin/Heidelberg, Germany, 2020; ISBN 9783030316839. [Google Scholar]
- Mch Gestión del Agua, un Reto País. Available online: https://www.mch.cl/editorial/gestion-del-agua-un-reto-pais/# (accessed on 1 October 2021).
- Brenner, A. Clean Soil and Safe Water; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; pp. 3–9. [Google Scholar] [CrossRef]
- Friedler, E. Water reuse—An integral part of water resources management: Israel as a case study. Water Policy 2001, 3, 29–39. [Google Scholar] [CrossRef]
- Kfir, O.; Tal, A.; Gross, A.; Adar, E. The effect of reservoir operational features on recycled wastewater quality. Resour. Conserv. Recycl. 2012, 68, 76–87. [Google Scholar] [CrossRef]
- Cameira, M.d.R.; Pereira, L.S. Innovation Issues in Water, Agriculture and Food. Water 2019, 11, 1230. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Goyal, K. Water reuse in India: Current perspective and future potential. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2020; pp. 33–63. [Google Scholar]
- Pereira, L.S. Water, Agriculture and Food: Challenges and Issues. Water Resour. Manag. 2017, 31, 2985–2999. [Google Scholar] [CrossRef]
- Tariq, M.A.U.R.; Damnics, R.R.; Rajabi, Z.; Shahid, M.L.U.R.; Muttil, N. Identification of Major Inefficient Water Consumption Areas Considering Water Consumption, Efficiencies, and Footprints in Australia. Appl. Sci. 2020, 10, 6156. [Google Scholar] [CrossRef]
- Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E. Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile. Sustainability 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Jerez, B.; Garcés, I.; Torres, R. Lithium extractivism and water injustices in the Salar de Atacama, Chile: The colonial shadow of green electromobility. Polit. Geogr. 2021, 87, 102382. [Google Scholar] [CrossRef]
- Liu, W.; Agusdinata, D.B.; Myint, S.W. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 145–156. [Google Scholar] [CrossRef]
- Torres, D.; Ayala, L.; Jeldres, R.I.; Cerecedo-Sáenz, E.; Salinas-Rodríguez, E.; Robles, P.; Toro, N. Leaching Chalcopyrite with High MnO2 and Chloride Concentrations. Metals 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Toro, N.; Briceño, W.; Pérez, K.; Cánovas, M.; Trigueros, E.; Sepúlveda, R.; Hernández, P. Leaching of pure chalcocite in a chloride media using sea water and waste water. Metals 2019, 9, 780. [Google Scholar] [CrossRef] [Green Version]
- Tundisi, J. Water resources in the future: Problems and solutions. Estud. Avançados 2008, 22, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Herrera-León, S.; Cruz, C.; Kraslawski, A.; Cisternas, L.A. Current situation and major challenges of desalination in Chile. Desalin. Water Treat. 2019, 171, 93–104. [Google Scholar] [CrossRef]
- Peters, N.E.; Meybeck, M. Water quality degradation effects on freshwater availability: Impacts of human activities. Water Int. 2000, 25, 185–193. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob. Environ. Change 2010, 20, 113–120. [Google Scholar] [CrossRef]
- COCHILCO. Consumo de Agua en la Minería del Cobre; COCHILCO: Santiago, Chile, 2019. [Google Scholar]
- Mudd, G.M. The Sustainability of Mining in Australia: Key Production Trends and Their Environmental Implications for the Future; Department of Civil Engineering, Monash University: Melbourne, Australia, 2009; ISBN 9780980319941. [Google Scholar]
- Toro, N.; Robles, P.; Jeldres, R.I. Seabed mineral resources, an alternative for the future of renewable energy: A critical review. Ore Geol. Rev. 2020, 126, 103699. [Google Scholar] [CrossRef]
- Pérez, K.; Toro, N.; Saldaña, M.; Salinas-Rodríguez, E.; Robles, P.; Torres, D.; Jeldres, R.I. Statistical Study for Leaching of Covellite in a Chloride Media. Metals 2020, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Wisskirchen, C.W.J.; Vásquez, F. In Considerations for seawater in mining: Approaches to evaluate ARD and metals leaching potential. In Proceedings of the 3rd International Congress on Water Management in the Mining Industry, Santiago, Chile, 6–8 June 2012; pp. 524–534. [Google Scholar]
- Herrera, L. Problemas Operativos Asociados al Desarrollo de Algas y Cianobacterias en Sistemas de Agua en Minería: Uso de Agua de Mar en Procesos Industriales; Xpert, Ingeniería y Producción S.A.: Santiago, Chile, 2008. [Google Scholar]
- Busch, M.; Mickols, W.E. Reducing energy consumption in seawater desalination. Desalination 2004, 165, 299–312. [Google Scholar] [CrossRef]
- Calabrò, V.; Basile, A. Economic analysis of membrane use in industrial applications. In Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2011; pp. 90–109. [Google Scholar]
- Feria-Díaz, J.J.; Correa-Mahecha, F.; López-Méndez, M.C.; Rodríguez-Miranda, J.P.; Barrera-Rojas, J. Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review. Water 2021, 13, 1369. [Google Scholar] [CrossRef]
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Cisternas, L.; Moreno, L. El Agua de Mar en la Minería: Fundamentos y Aplicaciones. Inf. Tecnol. 2014, 25, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Toro Villarroel, N.R. Optimización de Parámetros Para la Extracción de Elementos Desde Minerales en Medios Ácido; Universidad Politécnica de Cartagena: Cartagena, Spain, 2020. [Google Scholar]
- Hernández, P.C. Estudio Del Equilibrio Sólido-Líquido De Sistemas Acuosos De Minerales De Cobre Con Agua De Mar, Aplicado A Procesos De Lixiviación; Universidad De Antofagasta: Antofagasta, Chile, 2013. [Google Scholar]
- Castellón, C.I.; Hernández, P.C.; Velásquez-Yévenes, L.; Taboada, M.E. An alternative process for leaching chalcopyrite concentrate in nitrate-acid-seawater media with oxidant recovery. Metals 2020, 10, 518. [Google Scholar] [CrossRef] [Green Version]
- Cerda, C.P.; Taboada, M.E.; Jamett, N.E.; Ghorbani, Y.; Hernández, P.C. Effect of pretreatment on leaching primary copper sulfide in acid-chloride media. Minerals 2018, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Hernández, P.C.; Taboada, M.E.; Herreros, O.O.; Graber, T.A.; Ghorbani, Y. Leaching of chalcopyrite in acidified nitrate using seawater-based media. Minerals 2018, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Hernández, P.C.; Dupont, J.; Herreros, O.O.; Jimenez, Y.P.; Torres, C.M. Accelerating copper leaching from sulfide ores in acid-nitrate-chloride media using agglomeration and curing as pretreatment. Minerals 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Velásquez-Yévenes, L.; Torres, D.; Toro, N. Leaching of chalcopyrite ore agglomerated with high chloride concentration and high curing periods. Hydrometallurgy 2018, 181, 215–220. [Google Scholar] [CrossRef]
- Velásquez-Yévenes, L.; Quezada-Reyes, V. Influence of seawater and discard brine on the dissolution of copper ore and copper concentrate. Hydrometallurgy 2018, 180, 88–95. [Google Scholar] [CrossRef]
- Pérez, K.; Jeldres, R.; Nieto, S.; Salinas-Rodríguez, E.; Robles, P.; Quezada, V.; Hernández-Ávila, J.; Toro, N. Leaching of pure chalcocite in a chloride media using waste water at high temperature. Metals 2020, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Saldaña, M.; Rodríguez, F.; Rojas, A.; Pérez, K.; Angulo, P. Development of an empirical model for copper extraction from chalcocite in chloride media. Hem. Ind. 2020, 74, 285–292. [Google Scholar] [CrossRef]
- Millero, F.J.; Feistel, R.; Wright, D.G.; McDougall, T.J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 50–72. [Google Scholar] [CrossRef]
- Fisher, W.W.; Flores, F.A.; Henderson, J.A. Comparison of chalcocite dissolution in the oxygenated, aqueous sulfate and chloride systems. Miner. Eng. 1992, 5, 817–834. [Google Scholar] [CrossRef]
- Hashemzadeh, M.; Dixon, D.G.; Liu, W. Modelling the kinetics of chalcocite leaching in acidified cupric chloride media under fully controlled pH and potential. Hydrometallurgy 2019, 189, 105114. [Google Scholar] [CrossRef]
- Senanayake, G. Chloride assisted leaching of chalcocite by oxygenated sulphuric acid via Cu(II)-OH-Cl. Miner. Eng. 2007, 20, 1075–1088. [Google Scholar] [CrossRef]
- Hernández, P.; Dorador, A.; Martínez, M.; Toro, N.; Castillo, J.; Ghorbani, Y. Use of Seawater/Brine and Caliche’s Salts as Clean and Environmentally Friendly Sources of Chloride and Nitrate Ions for Chalcopyrite Concentrate Leaching. Minerals 2020, 10, 477. [Google Scholar] [CrossRef]
- Hernández, P.; Gahona, G.; Martínez, M.; Toro, N.; Castillo, J. Caliche and Seawater, Sources of Nitrate and Chloride Ions to Chalcopyrite Leaching in Acid Media. Metals 2020, 10, 551. [Google Scholar] [CrossRef]
- Torres, D.; Trigueros, E.; Robles, P.; Leiva, W.H.; Jeldres, R.I.; Toledo, P.G.; Toro, N. Leaching of Pure Chalcocite with Reject Brine and MnO2 from Manganese Nodules. Metals 2020, 10, 1426. [Google Scholar] [CrossRef]
- COCHILCO. Proyeccion Agua Mineria del Cobre, 2019–2030; COCHILCO: Santiago, Chile, 2020. [Google Scholar]
- ALTALEY. MINERÍA VERDE: Oportunidades y Desafíos; ALTALEY: Vancouver, BC, Canada, 2021. [Google Scholar]
- Binici, A.; Kaya, G.K. Effect of brine and dry salting methods on the physicochemical and microbial quality of chub (Squalius cephalus Linnaeus, 1758). Food Sci. Technol. 2018, 38, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Sasakura Engineering Co., Ltd. Effective Utilization of Seawater—Fresh Water Generator and Seawater Desalination. Mar. Eng. 2021, 56, 222–226. [Google Scholar] [CrossRef]
- Tan, G.; Xue, X.; Zhu, Z.; Li, J. Ultrahigh and Stable Water Recovery of Reverse Osmosis-Concentrated Seawater with Membrane Distillation by Synchronously Optimizing Membrane Interfaces and Seawater Ingredients. ACS EST Water 2021, 1, 1577–1586. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Zhang, Y.; Jegatheesan, V. A review of resource recovery from seawater desalination brine. Rev. Environ. Sci. Bio/Technol. 2021, 20, 333–361. [Google Scholar] [CrossRef]
- Gude, V.G. Energy storage for desalination processes powered by renewable energy and waste heat sources. Appl. Energy 2015, 137, 877–898. [Google Scholar] [CrossRef]
- Bogdanović, G.D.; Petrović, S.; Sokić, M.; Antonijević, M.M. Chalcopyrite leaching in acid media: A review. Metall. Mater. Eng. 2020, 26, 177–198. [Google Scholar] [CrossRef]
- Miki, H.; Nicol, M.; Velásquez-Yévenes, L. The kinetics of dissolution of synthetic covellite, chalcocite and digenite in dilute chloride solutions at ambient temperatures. Hydrometallurgy 2011, 105, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, M.C.; Montes, K.S.; Padilla, R. Galvanic Effect of Pyrite on Chalcopyrite Leaching in Sulfate-Chloride Media. Miner. Process. Extr. Metall. Rev. 2015, 36, 65–70. [Google Scholar] [CrossRef]
- Sokić, M.; Marković, B.; Stanković, S.; Kamberović, Ž; Štrbac, N.; Manojlović, V.; Petronijević, N. Kinetics of Chalcopyrite Leaching by Hydrogen Peroxide in Sulfuric Acid. Metals 2019, 9, 1173. [Google Scholar] [CrossRef] [Green Version]
Water (m3/seg) | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 |
---|---|---|---|---|---|---|---|---|---|---|---|
Continental water | 13.3 | 12.8 | 12.9 | 13.2 | 13.4 | 12.9 | 12.4 | 12.6 | 12.3 | 12.3 | 12.5 |
Seawater | 5 | 5.6 | 7.5 | 8.2 | 9.2 | 9.9 | 10.6 | 10.9 | 10.7 | 10.9 | 11 |
Total | 18.3 | 18.4 | 20.4 | 21.4 | 22.6 | 22.8 | 23 | 23.5 | 23 | 23.2 | 23.5 |
Solute | g/kg of Solution | Solute | g/kg of Solution |
---|---|---|---|
Na+ | 10.78145 | Br− | 0.06728 |
Mg2+ | 1.28372 | CO32− | 0.01434 |
Ca2+ | 0.41208 | B(OH)4− | 0.00795 |
K+ | 0.3991 | F− | 0.0013 |
Sr2+ | 0.00795 | OH− | 0.00014 |
Cl− | 19.35271 | B(OH)3 | 0.01944 |
SO42− | 2.71235 | CO2 | 0.00042 |
HCO3− | 0.10481 | Total | 35.16504 |
Mine | Desalination Capacity (L/s) | Seawater Use Capacity (L/s) | Length of Water Transport Pipes (km) |
---|---|---|---|
Michilla | 75 | 23 | - |
Planta J.A. Moreno (Taltal) | - | 15 | - |
Las Cenizas (Taltal) | 9 | 12 | 7 |
Mantos de la Luna | 20 | 5 | 8 |
Pampa Camarones | - | 25 | 12 |
Centinela | 50 | 1500 | 145 |
Cap Minería | 600 | - | 120 |
Escondida (Planta Coloso) | 525 | - | 180 |
Antucoya | 20 | 280 | 145 |
Candelaria | 300 | - | 110 |
Mantoverde | 120 | - | 42 |
Sierra Gorda | - | 1315 | 142 |
Escondida EWS | 2500 | - | 180 |
Candelaria | 700 | - | 110 |
Mine | Desalination Capacity (L/s) | Seawater Use capacity (L/s) | Length of Water Transport Pipes (km) | Start-Up Year |
---|---|---|---|---|
Los Pelambres | 400 | - | 150 | 2021 |
Spence Growth Option | 800 (1600 potential) | - | 154 | 2021 |
MantoVerde | Add 260 to current capacity | - | 42 | 2022 |
ENAPAC (Múltiples mineras de la zona norte de Chile) | 2630 | - | - | 2022 |
Quebrada Blanca | 850 (1200 potential) | - | 160 | 2023 |
CODELCO (Chuquicamata, Radomiro Tomic y Ministro Hales) | 840 (1956 potential) | - | 160 | 2023 |
Santo Domingo | 30 | 400 | 112 | 2024 |
COLLAHUASI | 525 (1050 potential) | - | 195 | 2024 |
Diego de Almagro | - | 315 | 61 | 2025 |
Centinela | - | 1650 | 145 | 2025 |
El Abra | 500 | - | - | 2027 |
Nueva Unión | 700 | - | - | 2028 |
Previous Research | [5] | [57] |
---|---|---|
Compound | Concentration (g/L) | Concentration (g/L) |
Fluoride (F−) | 0.002 | 0.002 |
Calcium (Ca2+) | 0.8 | 0.4 |
Magnesium (Mg2+) | 2.65 | 2.29 |
Sodium (Na+) | 20.85 | 19.77 |
Potassium (K+) | 0.82 | 0.75 |
Bicarbonate (HCO3−) | 1.1 | 0.236 |
Chloride (Cl−) | 39.16 | 36.07 |
Calcium carbonate (CaCO3) | 13 | 10 |
Research | Mineral | Leaching Agent | Parameters | Cu Extraction (%) | Reference |
---|---|---|---|---|---|
Influence of seawater and discard brine on the dissolution of copper ore andcopper concentrate | Copper Oxides (Atacamite and Chrysocolla), Chalcopyrite Concentrate, Chalcopyrite Mineral | H2SO4, NaCl, Discard salts | Chloride concentration, cure time, potential redox variation in the leaching solution | 92 | [49] |
Leaching of Pure Chalcocite in a Chloride Media Using Sea Water and Wastewater | Chalcocite | H2SO4, NaCl | Chloride concentration, acid concentration | 67.75 | [26] |
Leaching of Pure Chalcocite in a Chloride Media Using Wastewater at High Temperature | Chalcocite | H2SO4, NaCl | Acid concentration, chloride concentration, temperature | 97 | [50] |
Caliche and Seawater, Sources of Nitrate and Chloride Ions to Chalcopyrite Leaching in Acid Media | Chalcopyrite | H2SO4, NaNO3, NaCl | Temperature, solid/ liquid ratio, chloride concentration, particle size, nitrate concentration, acid concentration, cure time | 92.3 | [57] |
Dissolution of pure chalcopyrite with manganese nodules and wastewater | Chalcopyrite | H2SO4, NaCl, MnO2 | stirring speed, acid concentration, MnO2 concentration, potential variation in the leaching solution | 77 | [5] |
Leaching Chalcopyrite with High MnO2 and Chloride Concentrations | Chalcopyrite | H2SO4, MnO2 | Particle size, temperature | 71 | [25] |
Use of Seawater/Brine and Caliche’s Salts as Cleanand Environmentally Friendly Sources of Chloride and Nitrate Ions for Chalcopyrite Concentrate Leaching | Chalcopyrite concentrate | H2SO4, caliche salts | Acid concentration, nitrate concentration, chloride concentration, temperature, cure time | 90.6 | [56] |
Leaching of Pure Chalcocite with Reject Brine and MnO2 from Manganese Nodules | Chalcocite | H2SO4, NaCl, MnO2 | chloride concentration, acid concentration, potential redox variation in the leaching solution, MnO2 concentration | 71 | [58] |
Experimental Conditions and Results | [26] | [58] |
---|---|---|
Temperature (°C) | 25 | 25 |
Particle size of Cu2S (um) | −147 + 104 | −147 + 104 |
H2SO4 concentration (mol/L) | 0.5 | 0.5 |
MnO2/Cu2S ratio (w/w) | - | 0.25:1 |
Dissolution in seawater after 4 h (%) | 32.8 | 35.6 |
Dissolution in reject brine after 4 h (%) | 36 | 40 |
Dissolution in seawater after 48 h (%) | 63.4 | 64.7 |
Dissolution in reject brine after 48 h (%) | 64.6 | 66.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro, N.; Gálvez, E.; Robles, P.; Castillo, J.; Villca, G.; Salinas-Rodríguez, E. Use of Alternative Water Resources in Copper Leaching Processes in Chilean Mining Industry—A Review. Metals 2022, 12, 445. https://doi.org/10.3390/met12030445
Toro N, Gálvez E, Robles P, Castillo J, Villca G, Salinas-Rodríguez E. Use of Alternative Water Resources in Copper Leaching Processes in Chilean Mining Industry—A Review. Metals. 2022; 12(3):445. https://doi.org/10.3390/met12030445
Chicago/Turabian StyleToro, Norman, Edelmira Gálvez, Pedro Robles, Jonathan Castillo, Grecia Villca, and Eleazar Salinas-Rodríguez. 2022. "Use of Alternative Water Resources in Copper Leaching Processes in Chilean Mining Industry—A Review" Metals 12, no. 3: 445. https://doi.org/10.3390/met12030445
APA StyleToro, N., Gálvez, E., Robles, P., Castillo, J., Villca, G., & Salinas-Rodríguez, E. (2022). Use of Alternative Water Resources in Copper Leaching Processes in Chilean Mining Industry—A Review. Metals, 12(3), 445. https://doi.org/10.3390/met12030445