Selection of Additive Elements Focusing on Impact Resistance in Practical TiAl Cast Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Impact Resistance of the Fabricated Ti–Al Binary Alloys
3.2. Effect of Each Additive Element on the Impact Resistance
3.3. Evaluation of the Effect of Each Additive Element and Comparison with Practical Alloys
4. Summary
- (1)
- In Ti-Al binary alloys, 45.5–47.5 at.% Al was found to be adequate for maintaining a high impact resistance in both the as-cast and heat-treated states.
- (2)
- V, Cr, Mn, and B slightly improved the impact resistance compared to that of binary alloys when appropriate amounts were added, both in the as-cast and heat-treated states. In contrast, the addition of Nb, Mo, W, Fe, Ni, Si, C, and N decreased the impact resistance.
- (3)
- When a slight decrease in the impact resistance was allowed, Si and C improved the creep strength, while Nb and W improved the anti-oxidation resistance in the as-cast state.
- (4)
- The excellence of the past practical TiAl cast alloys, to which only Cr, Mn, B, and the above elements were added, could be confirmed.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tetsui, T. Development of a TiAl turbocharger for passenger vehicles. Mater. Sci. Eng. A 2002, 329, 528–588. [Google Scholar] [CrossRef]
- Noda, T. Application of cast gamma TiAl for automobiles. Intermetallics 1998, 6, 709–713. [Google Scholar] [CrossRef]
- Bewlay, B.P.; Nag, S.; Suzuki, A.; Weimer, M. TiAl alloys in commercial aircraft engines. Mater. High Temp. 2016, 33, 549–559. [Google Scholar] [CrossRef]
- Bewlay, B.P.; Weimer, M.; Kelly, T.; Suzuki, A.; Subramanian, P.R. The science, technology, and implementation of TiAl alloys in commercial aircraft engines. In Symposium JJ—Intermetallic-Based Alloys—Science, Technology and Applications; Haislmaier, M., Baker, V., Kumar, S., Yoshimi, K., Eds.; MRS Online Proceedings Library: Online, 2013; Volume 1516, pp. 49–58. [Google Scholar]
- Perrut, M.; Caron, P.; Thomas, M.; Couret, A. High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys. C. R. Phys. 2018, 19, 657–671. [Google Scholar] [CrossRef]
- Brotzu, A.; Felli, F.; Mondal, A.; Pilone, D. Production issues in the manufacturing of TiAl turbine blades by investment casting. Procedia Struct. Integr. 2020, 25, 79–87. [Google Scholar] [CrossRef]
- Burtscher, M.; Klein, T.; Lindemann, J.; Lehmann, O.; Fellmann, H.; Güther, V.; Clemens, H.; Mayer, S. An advanced TiAl alloy for high-performance racing applications. Metals 2020, 13, 4720. [Google Scholar] [CrossRef]
- Tetsui, T. Practical use of hot-forged-type Ti-42Al-5Mn and various recent improvements. Metals 2021, 11, 1361. [Google Scholar] [CrossRef]
- Habel, U.; Heutling, F.; Kunze, C.; Smarsly, W.; Das, G.; Clemens, H. Chapter 208, Forged intermetallic γ-TiAl-based alloy low-pressure turbine blade in the geared turbofan. In Proceedings of the 13th World Conference on Titanium; Vasisht Venkatesh, V., Pilchak, A.L., Allison, J.E., Ankem, S., Boyer, R., Christodoulou, J., Fraser, H.L., Imam, M.A., Kosaka, Y., Rack, H.J., et al., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 1223–1227. [Google Scholar]
- Clemens, H.; Mayer, S. Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties. Mater. High Temp. 2016, 33, 560–570. [Google Scholar] [CrossRef]
- Wang, X.; Xu, W.; Xu, P.; Zhou, H.; Kong, F.; Chen, Y. High Nb–TiAl intermetallic blades fabricated by isothermal die forging process at low temperature. Metals 2020, 10, 757. [Google Scholar] [CrossRef]
- Flightglobal.com. Available online: https://www.flightglobal.com/engines/faa-orders-pw1100g-low-pressure-turbine-blade-replacement/135575.article (accessed on 13 January 2022).
- Dzogbewu, T.C.; Preez, W.B. Additive manufacturing of Ti-based intermetallic alloys: A review and conceptualization of a next-generation machine. Materials 2021, 14, 4317. [Google Scholar] [CrossRef]
- Mizuta, K.; Hijikata, Y.; Fujii, T.; Gokan, K.; Kakehi, K. Characterization of Ti-48Al-2Cr-2Nb built by selective laser melting. Scr. Mater. 2021, 203, 114107. [Google Scholar] [CrossRef]
- Liu, Z.C.; Lin, J.P.; Chen, G.L. Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys. Intermetallics 2002, 10, 653–659. [Google Scholar] [CrossRef]
- Lin, J.P.; Zhao, L.L.; Li, G.Y.; Zhang, L.Q.; Song, X.P.; Ye, F.; Chen, G.L. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics 2011, 19, 131–136. [Google Scholar] [CrossRef]
- Huang, S.C.; Hall, E.L. Characterization of the effect of vanadium additions to TiAl base alloy. Acta Metall. et Mater. 1991, 39, 1053–1060. [Google Scholar] [CrossRef]
- Nobuki, M.; Vanderschueren, D.; Nakamura, M. High temperature mechanical properties of vanadium alloyed γ base titanium-aluminides. Acta Metall. et Mater. 1994, 42, 2623–2632. [Google Scholar] [CrossRef]
- Anada, H.; Shida, Y. Effect of Mo addition on the oxidation behavior of TiAl intermetallic compound. Mater. Trans. JIM 1995, 36, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Remez, M.V.; Prerov, Y.M.; Bondar, A.A.; Wasiewicz, V.; Hecht, U.; Tsyganenko, N.I.; Bilous, O.O.; Petyukh, V.M. Structure and properties of TiAl-based alloys doped with 2 at.% Mo. Powder Metall. Met. Ceram. 2020, 59, 454–466. [Google Scholar] [CrossRef]
- Dymek, S.; Wrobel, M.; Blicharski, M. Influence of tungsten on microstructure of mechanically alloyed γ-TiAl. J. Microsc. 2006, 223, 292–294. [Google Scholar] [CrossRef]
- Voisin, T.; Monchoux, J.P.; Thomas, M.; Deshayes, C.; Couret, A. Mechanical properties of the TiAl IRIS alloy. Metall. Mater. Trans. A 2016, 47, 6097–6108. [Google Scholar] [CrossRef]
- Lee, D.B. Effect of Fe on the high temperature oxidation of TiAl alloys. Met. Mater. Int. 2005, 11, 313. [Google Scholar] [CrossRef]
- Levin, L.; Tokar, A.; Talianker, M.; Evangelista, E. Non-equilibrium microstructures in TiAl–2Fe alloy. Intermetallics 1999, 7, 1317–1322. [Google Scholar] [CrossRef]
- Hamzah, E.; Kanniah, M.; Harun, M. Effect of chromium addition on microstructure, tensile properties and creep resistance of as-cast Ti-48Al alloy. J. Mater. Sci. 2007, 42, 9063–9069. [Google Scholar] [CrossRef]
- Wang, F.; Tang, Z.; Wu, W. Effect of chromium on the oxidation resistance of TiAl intermetallics. Oxid. Met. 1997, 48, 381–390. [Google Scholar] [CrossRef]
- Lee, D.B.; Jang, Y.D.; Nakamura, M. High temperature oxidation of Ti–47%Al–1%Mn alloy. Mater. Trans. 2002, 43, 2531–2535. [Google Scholar] [CrossRef] [Green Version]
- Tetsui, T.; Shindo, K.; Kobayashi, S.; Takeyama, M. A newly developed hot-worked TiAl alloy was used for blades and structural components. Scr. Mater. 2002, 47, 399–403. [Google Scholar] [CrossRef]
- Bauer, J.; Rogl, P.; Perrin, A.; Bohn, M.; Wolf, W.; Podloucky, R.; Le Friec, Y.; Antoine, D. TiAl-based alloys with nickel. Intermetallics 1996, 4, 71–76. [Google Scholar] [CrossRef]
- Mantyi, H.C.; Cornish, L.A.; Chown, L.H.; Mwamba, I.A. Investigating the high temperature oxidation behavior of TiAl-based alloys with nickel and ruthenium additions. Adv. Mater. Res. 2014, 1019, 294–301. [Google Scholar] [CrossRef]
- Maki, K.; Shioda, M.; Sayashi, M.; Shimizu, T.; Isobe, S. Effect of silicon and niobium on oxidation resistance of TiA1 intermetallics. Mater. Sci. Eng. A 1992, 153, 591–596. [Google Scholar] [CrossRef]
- Li, X.Y.; Taniguchi, S. Oxidation behavior of a γ-TiAl-based alloy implanted by silicon and/or carbon. Mater. Sci. Eng. A 2005, 398, 268–274. [Google Scholar] [CrossRef]
- Park, Y.S.; Ahn, W.S.; Nam, S.W.; Hwang, S.K. The enhancement of low cycle fatigue life by carbon addition in lamellar TiAl alloy. Mater. Sci. Eng. A 2002, 336, 196–201. [Google Scholar] [CrossRef]
- Klein, T.; Schachermayer, M.; Martin, F.M.; Schoberl, T.; Rashkova, B.; Clemens, H.; Mayer, S. Carbon distribution in multi-phase γ-TiAl based alloys and its influence on mechanical properties and phase formation. Acta Mater. 2015, 94, 205–213. [Google Scholar] [CrossRef]
- Cho, H.S.; Nam, S.W.; Yun, J.H.; Wee, D.M. Effect of 1 at.% nitrogen addition on the creep resistance of two phase TiAl alloy. Mater. Sci. Eng. A 1999, 262, 129–136. [Google Scholar] [CrossRef]
- Schuon, S.R.; Druschitz, A.P. Microalloying TiAl with Nitrogen and Tungsten. JOM 1987, 39, 36–37. [Google Scholar] [CrossRef]
- Hu, D. Role of boron in TiAl alloy development: A review. Rare Met. 2016, 35, 1–14. [Google Scholar] [CrossRef]
- Feng, C.R.; Michel, D.J.; Crowe, C.R. The Effects of Boron in TiA1/Ti3A1. Scr. Metall. 1989, 23, 1707–1712. [Google Scholar] [CrossRef]
- Tetsui, T.; Kobayashi, T.; Mori, T.; Kishimoto, T.; Harada, H. Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy. Mater. Trans. 2010, 51, 1656–1662. [Google Scholar] [CrossRef] [Green Version]
- Tetsui, T.; Kobayashi, T.; Harada, H. Consideration of the influence of contamination from oxide crucibles on TiAl cast material, and the possibility of achieving low-purity TiAl precision cast turbine wheels. Intermetallics 2012, 31, 274–281. [Google Scholar] [CrossRef]
- Tetsui, T. Development of a Second Generation TiAl Turbocharger. Mater. Sci. Forum 2007, 561–565, 379–382. [Google Scholar] [CrossRef]
- Bartolotta, P.; Barrett, J.; Kelly, T.; Smashey, R. The use of cast Ti-48Al-2Cr-2Nb in jet engines. J. Miner. 1997, 49, 48–50. [Google Scholar] [CrossRef]
- Larsen, D.E.; Christodoulou, L.; Kampe, S.L.; Sadler, R. Investment-Cast processing of XDTM near-γ titanium aluminides. Mater. Sci. Eng. A 1991, 144, 45–49. [Google Scholar] [CrossRef]
- McQuay, P.A.; Simpkins, R.; Seo, D.Y.; Bieler, T.R. Alloy and process improvements for cast gamma TiAl alloy applications. In Gamma Titanium Aluminides 1999; Kim, Y.W., Dimiduk, D.M., Loretto, M.H., Eds.; The Minerals, Metals & Materials Society: Warrendale, PA, USA, 1999; pp. 197–207. [Google Scholar]
- Lapin, J.; Nazmy, M. Microstructure and creep properties of a cast intermetallic Ti–46Al–2W–0.5Si alloy for gas turbine applications. Mater. Sci. Eng. A 2004, 380, 298–307. [Google Scholar] [CrossRef]
- Koyanagi, Y.; Sumi, Y.; Takabayashi, H. Development of titanium aluminide alloy with good high temperature properties for turbine wheel (in Japanese). Denki Seiko 2014, 85, 121–125. [Google Scholar]
- Kawabata, T.; Tamura, T.; Izumi, O. Effect of Ti/Al ration and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl. Mater. Trans. A 1993, 24, 141–150. [Google Scholar] [CrossRef]
- Huang, S.C.; Hall, E.L.; Shih, D.S. Microstructure and ductility of TiAl alloys modified by Cr additions. ISIJ. Int. 1991, 31, 1100–1105. [Google Scholar] [CrossRef] [Green Version]
- Takagi, S.; Ouchi, C. Effects of alloying elements and heat treatment on the strength and ductility of Cast-Hipped TiAl (in Japanese). J. Jpn. Inst. Met. 1994, 58, 1001–1007. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, S.; Mills, M.J. The role of microstructural stability on compression creep of fully lamellar g-TiAl alloys. Intermetallics 2002, 13, 985–992. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Kim, S.-L. Effects of microstructure and C and Si additions on elevated temperature creep and fatigue of gamma TiAl alloys. Intermetallics 2014, 53, 92–101. [Google Scholar] [CrossRef]
- Shida, Y.; Anada, H. Role of W, Mo, Nb and Si on oxidation of TiAl in air at high temperatures. Mater. Trans. JIM 1994, 35, 623–631. [Google Scholar] [CrossRef] [Green Version]
Product Category | Impact Resistance in the As-Cast State | Impact Resistance after HIP | Creep Strength | Anti-Oxidation Resistance | Castability |
---|---|---|---|---|---|
High temperature parts used in the as-cast state | A, B | - | A | A | B |
Low temperature parts used after HIP | B | A | - | - | B |
Element | Addition Amount (at.%) |
---|---|
Nb | 1.8, 3.6, 5.4, 7.2, 9.0 |
V | 2.0, 4.0, 6.0, 8.0, 10.0 |
Mo | 0.6, 1.2, 1.8, 2.4, 3.0 |
W | 0.6, 1.2, 1.8, 2.4, 3.0 |
Fe | 0.6, 1.2, 1.8, 2.4, 3.0 |
Cr | 0.8, 1.6, 2.4, 3.2, 4.0 |
Mn | 1.2, 2.4, 3.6, 4.8, 6.0 |
Ni | 0.6, 1.2, 1.8, 2.4, 3.0 |
Si | 0.4, 0.8, 1.2, 1.6, 2.0 |
C | 0.07, 0.1, 0.2, 0.3, 0.4 |
N | 0.07, 0.1, 0.2, 0.3, 0.4 |
B | 0.1, 0.15, 0.3, 0.45, 0.6 |
Additive Elements | Selected Amount of Addition (at.%) | Creep Strength | Anti-Oxidation Resistance | Castability | |
---|---|---|---|---|---|
1 * | 2 * | ||||
Nb | - | 1.8 | Worsened | Improved | No effect |
V | 4.0 | - | Worsened | No effect | No effect |
Mo | - | 0.6 | No effect | No effect | No effect |
W | - | 0.6 | No effect | Improved | No effect |
Fe | - | 0.6 | Worsened | No effect | No effect |
Cr | 2.4 | - | Worsened | No effect | Improved |
Mn | 2.4 | - | Worsened | No effect | No effect |
Ni | - | 0.6 | Worsened | No effect | No effect |
Si | - | 0.4 | Improved | No effect | No effect |
C | - | 0.07 | Improved | No effect | No effect |
N | - | 0.07 | No effect | No effect | No effect |
B | 0.10 | - | No effect | No effect | No effect |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tetsui, T. Selection of Additive Elements Focusing on Impact Resistance in Practical TiAl Cast Alloys. Metals 2022, 12, 544. https://doi.org/10.3390/met12040544
Tetsui T. Selection of Additive Elements Focusing on Impact Resistance in Practical TiAl Cast Alloys. Metals. 2022; 12(4):544. https://doi.org/10.3390/met12040544
Chicago/Turabian StyleTetsui, Toshimitsu. 2022. "Selection of Additive Elements Focusing on Impact Resistance in Practical TiAl Cast Alloys" Metals 12, no. 4: 544. https://doi.org/10.3390/met12040544
APA StyleTetsui, T. (2022). Selection of Additive Elements Focusing on Impact Resistance in Practical TiAl Cast Alloys. Metals, 12(4), 544. https://doi.org/10.3390/met12040544