Effect of Microstructures on the Tribological Performance of Medium Carbon Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Microstructure Characterization and Phase Analysis
2.3. Microhardness Test
2.4. Abrasive Wear Testing and Characterization
2.5. Dry Sliding Friction Test and Characterization
3. Results and Discussion
3.1. Microstructure and Phase
3.2. Hardness
3.3. Abrasive Wear Properties
3.4. Dry Sliding Friction Properties
3.5. Tribology Mechanism
4. Conclusions
- QT with low-temperature-tempered martensite possessed the highest hardness (532.3HV) and best abrasive wear resistance. ST with spherical pearlite possessed the lowest steady-state COF (0.5251), although its hardness (222.6HV) was significantly lower than that of QT.
- The characteristics of cementite precipitation had no direct effect on the abrasive wear behavior. The increase in hardness can improve the abrasive wear performance of medium carbon steels and cause the abrasive wear mechanism to change from ploughing to cutting. Moreover, increasing the hardness alone does not guarantee improvement of the dry sliding friction performance of medium carbon steel.
- A spherical pearlite microstructure can reduce the occurrence of adhesive wear, resulting in a significant decrease in the COF. Cylinder liners made of medium carbon steel with a spherical pearlite microstructure may help to improve the thermal efficiency of internal combustion engines, thereby achieving the purpose of energy savings and emissions reduction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sedunov, V.K.; Evseev, Y.K.; Il’in, N.I. Wear resistance of a cylinder sleeve-piston ring rubbing pair. Met. Sci. Heat Treat. 1984, 26, 533–537. [Google Scholar] [CrossRef]
- Grabon, W.; Koszela, W.; Pawlus, P.; Ochwat, S. Improving tribological behaviour of piston ring-cylinder liner frictional pair by liner surface texturing. Tribol. Int. 2013, 61, 102–108. [Google Scholar] [CrossRef]
- Jin, M. Friction Behavior of Micro Dimples Filled with MoS2 on Alloy Plated Cylinder Liner Surface. Ph.D. Thesis, Dalian Maritime University, Dalian, China, 2018. [Google Scholar]
- Kikuhara, K.; Koeser, P.S.; Tian, T. Effects of a Cylinder Liner Microstructure on Lubrication Condition of a Twin-Land Oil Control Ring and a Piston Skirt of an Internal Combustion Engine. Tribol. Lett. 2021, 70, 6. [Google Scholar] [CrossRef]
- Zhou, H.X.; Zhou, Z.; Liu, J.P. High temperature cylinder sleeve design research self-lubricating materials. In Proceedings of the 2nd International Conference on Machinery, Materials Science and Energy Engineering (ICMMSEE), Changsha, China, 20–21 September 2014; Trans Tech Publications Ltd.: Changsha, China, 2014; pp. 53–58. [Google Scholar]
- Okada, T.; Iwai, Y.; Yamamoto, A. A study of cavitation erosion of cast iron. Wear 1983, 84, 297–312. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.P.; Barber, G.C.; Thrush, S.J.; Li, X. Wear Resistance of Medium Carbon Steel with Different Microstructures. Materials 2021, 14, 2015. [Google Scholar] [CrossRef]
- Krauss, G. Steels: Processing, Structure, and Performance; ASM International: Russell Township, OH, USA, 2015. [Google Scholar]
- Trevisiol, C.; Jourani, A.; Bouvier, S. Effect of microstructures with the same chemical composition and similar hardness levels on tribological behavior of a low alloy steel. Tribol. Int. 2018, 127, 389–403. [Google Scholar] [CrossRef]
- Chattopadhyay, C.; Sangal, S.; Mondal, K.; Garg, A. Improved wear resistance of medium carbon microalloyed bainitic steels. Wear 2012, 289, 168–179. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.P.; Hou, J.Y.; Barber, G.C.; Qiu, F. Tribological behavior of shot peened/austempered AISI 5160 steel. Tribol. Int. 2020, 145, 14. [Google Scholar] [CrossRef]
- Trevisiol, C.; Jourani, A.; Bouvier, S. Effect of Martensite Morphology on Tribological Behaviour of a Low-Alloy Steel. Metallogr. Microstruct. Anal. 2019, 8, 123–134. [Google Scholar] [CrossRef]
- Trevisiol, C.; Jourani, A.; Bouvier, S. Effect of hardness, microstructure, normal load and abrasive size on friction and on wear behaviour of 35NCD16 steel. Wear 2017, 388–389, 101–111. [Google Scholar] [CrossRef]
- Trevisiol, C.; Jourani, A.; Bouvier, S. Effect of martensite volume fraction and abrasive particles size on friction and wear behaviour of a low alloy steel. Tribol. Int. 2017, 113, 411–425. [Google Scholar] [CrossRef]
- Saghafian, H.; Kheirandish, S. Correlating microstructural features with wear resistance of dual phase steel. Mater. Lett. 2007, 61, 3059–3063. [Google Scholar] [CrossRef]
- Modi, A.P. Effects of microstructure and experimental parameters on high stress abrasive wear behaviour of a 0.19wt% C dual phase steel. Tribol. Int. 2007, 40, 490–497. [Google Scholar] [CrossRef]
- Modi, O.P.; Pandit, P.; Mondal, D.P.; Prasad, B.K.; Yegneswaran, A.H.; Chrysanthou, A. High-stress abrasive wear response of 0.2% carbon dual phase steel: Effects of microstructural features and experimental conditions. Mater. Sci. Eng. A 2007, 458, 303–311. [Google Scholar] [CrossRef]
- Abouei, V.; Saghafian, H.; Kheirandish, S. Dry Sliding Oxidative Wear in Plain Carbon Dual Phase Steel. J. Iron Steel Res. Int. 2007, 14, 43–48. [Google Scholar] [CrossRef]
- Tyagi, R.; Nath, S.K.; Ray, S. Effect of martensite content on friction and oxidative wear behavior of 0.42 Pct carbon dual-phase steel. Metall. Mater. Trans. A 2002, 33, 3479–3488. [Google Scholar] [CrossRef]
- Xu, X.; van der Zwaag, S.; Xu, W. The effect of martensite volume fraction on the scratch and abrasion resistance of a ferrite–martensite dual phase steel. Wear 2016, 348, 80–88. [Google Scholar] [CrossRef]
- Xu, X.; van der Zwaag, S.; Xu, W. The effect of ferrite–martensite morphology on the scratch and abrasive wear behaviour of a dual phase construction steel. Wear 2016, 348, 148–157. [Google Scholar] [CrossRef]
- Jha, A.K.; Prasad, B.K.; Modi, O.P.; Das, S. Yegneswaran, Correlating microstructural features and mechanical properties with abrasion resistance of a high strength low alloy steel. Wear 2003, 254, 120–128. [Google Scholar] [CrossRef]
- Xu, X.J.; Xu, W.; Ederveen, F.H.; van der Zwaag, S. Design of low hardness abrasion resistant steels. Wear 2013, 301, 89–93. [Google Scholar] [CrossRef]
- Wayne, S.F.; Rice, S.L.; Minakawa, K.; Nowotny, H. The role of microstructure in the wear of selected steels. Wear 1983, 85, 93–106. [Google Scholar] [CrossRef]
- Sawa, M.; Rigney, D.A. Sliding behavior of dual phase steels in vacuum and in air. Wear 1987, 119, 369–390. [Google Scholar] [CrossRef]
- Goddard, J.; Wilman, H. A theory of friction and wear during the abrasion of metals. Wear 1962, 5, 114–135. [Google Scholar] [CrossRef]
- Lu, K.; Lu, L.; Suresh, S. Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science 2009, 324, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.J.; Wang, F.F.; Zhou, Y.C.; Wang, X.; Chen, C.; Wei, S.Z. Fabrication and wear property of in-situ micro-nano dual-scale vanadium carbide ceramics strengthened wear-resistant composite layers. Ceram. Int. 2021, 47, 953–964. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; Honeycombe, S.R. The tempering of martensite. In Steels, 3rd ed.; Bhadeshia, H.K.D.H., Honeycombe, S.R., Eds.; Butterworth-Heinemann: Oxford, UK, 2006; pp. 183–208. [Google Scholar]
- Hutchinson, B.; Hagstrom, J.; Karlsson, O.; Lindell, D.; Tornberg, M.; Lindberg, F.; Thuvander, M. Microstructures and hardness of as-quenched martensites (0.1-0.5%C). Acta Mater. 2011, 59, 5845–5858. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, J.; Wang, Y.; Liu, H.; Guo, S.; Liu, W.; Liu, Y. Strong grain-size effect on martensitic transformation in high-carbon steels made by powder metallurgy. Powder Technol. 2020, 363, 652–656. [Google Scholar] [CrossRef]
- Kim, B.; Boucard, E.; Sourmail, T.; San Martin, D.; Gey, N.; Rivera-Diaz-del-Castillo, P.E.J. The influence of silicon in tempered martensite: Understanding the microstructure-properties relationship in 0.5-0.6 wt.% C steels. Acta Mater. 2014, 68, 169–178. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Hokkirigawa, K.; Kato, K.; Li, Z.Z. The effect of hardness on the transition of the abrasive wear mechanism of steels. Wear 1988, 123, 241–251. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Jourani, A. Effect of Martensite Volume Fraction on Oxidative and Adhesive Wear. Materials 2021, 14, 2964. [Google Scholar] [CrossRef] [PubMed]
Parameters of Surface Roughness | Sqa /μm | Szb /μm | Sac /μm |
---|---|---|---|
QT | 1.702 | 29.760 | 1.308 |
NT | 1.738 | 48.989 | 1.318 |
ST | 1.735 | 31.669 | 1.298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, T.; Wei, S.; Xu, L.; Zhang, C.; Wang, X.; Xiong, M.; Mao, F.; You, L.; Chen, C. Effect of Microstructures on the Tribological Performance of Medium Carbon Steel. Metals 2022, 12, 546. https://doi.org/10.3390/met12040546
Jiang T, Wei S, Xu L, Zhang C, Wang X, Xiong M, Mao F, You L, Chen C. Effect of Microstructures on the Tribological Performance of Medium Carbon Steel. Metals. 2022; 12(4):546. https://doi.org/10.3390/met12040546
Chicago/Turabian StyleJiang, Tao, Shizhong Wei, Liujie Xu, Cheng Zhang, Xiaodong Wang, Mei Xiong, Feng Mao, Long You, and Chong Chen. 2022. "Effect of Microstructures on the Tribological Performance of Medium Carbon Steel" Metals 12, no. 4: 546. https://doi.org/10.3390/met12040546
APA StyleJiang, T., Wei, S., Xu, L., Zhang, C., Wang, X., Xiong, M., Mao, F., You, L., & Chen, C. (2022). Effect of Microstructures on the Tribological Performance of Medium Carbon Steel. Metals, 12(4), 546. https://doi.org/10.3390/met12040546