Surface Laser Treatment of Cast Irons: A Review
Abstract
:1. Introduction
2. Cast Irons
3. Laser Processing of Cast Irons
4. Laser Surface Treatment of Gray Cast Irons
5. Laser Surface Treatment of Ductile Irons
5.1. Pearlitic Ductile Irons
5.2. Austempered Ductile Irons
5.3. Ferritic Ductile Irons
5.4. Overall Facts of Surface Laser Treatment of Cast Irons
6. Concluding Remarks
- The use of diode and Nd:YAG lasers without coatings allows for higher absorption coefficients of the radiated energy than when using conventional CO2 lasers.
- Lasers with circular geometry and Gaussian energy distribution generate a parabolic heat-affected zone in the transverse section, where properties are not uniform within a constant layer depth.
- Single-pass LST with rectangular-shaped and uniform energy distribution lasers, as well as adjacent discrete laser spots, can be used to avoid a tempering effect of overlapping.
- Following laser modification, DIs and ADIs present lower wear damage under comparable conditions than GIs, since graphite flakes act as stress raisers, favoring crack nucleation and growth during friction, as in dry sliding tests.
- Regardless of the initial microstructure of the cast iron, the linear energy is the key parameter, since it considers the joint effect of experimental parameters, such as laser power, absorption layer thickness, and scanning velocity. It is suggested to apply surface hardening without melting on DIs and ADIs to achieve higher wear resistance, because of the nature of the residual stresses created during phase transformations (compressive in LSH and tensile in LSM).
- Further research challenges include the analysis of the effect of alloying elements, such as Mo, Cr, or Ni, on the thermal process and mechanical properties induced by LST. Moreover, extra features, such as grain growth and surface roughness, must be added into LST simulations in order to ensure a reliable validation and determination of the scope and precision of the model.
- Future technological challenges involve the analysis of costs and implementation of LST at the industrial level, especially in high-technology and -impact environments, to evaluate the performance of this treatment in real conditions. In this regard, the information presented in this review article is a guide to encourage future investigation prospects in cast irons and ferrous alloys in general.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aliakbari, K.; Masoudi Nejad, R.; Akbarpour Mamaghani, T.; Pouryamout, P.; Rahimi Asiabaraki, H. Failure analysis of ductile iron crankshaft in compact pickup truck diesel engine. Structures 2022, 36, 482–492. [Google Scholar] [CrossRef]
- Concli, F. Austempered Ductile Iron (ADI) for gears: Contact and bending fatigue behavior. Procedia Struct. Integr. 2018, 8, 14–23. [Google Scholar] [CrossRef]
- Artola, G.; Gallastegi, I.; Izaga, J.; Barreña, M.; Rimmer, A. Austempered Ductile Iron (ADI) Alternative Material for High-Performance Applications. Int. J. Met. 2016, 11, 131–135. [Google Scholar] [CrossRef]
- Chakrabarty, I. Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Alloy Cast Irons and Their Engineering Applications; pp. 1–25. ISBN 978-0-12-803581-8. [Google Scholar]
- ASM International. Casting. In ASM Handbook, 9th ed.; ASM International: Materials Park, OH, USA, 1998; Volume 15, pp. 1–937. [Google Scholar]
- Collini, L.; Nicoletto, G.; Konecná, R. Microstructure and mechanical properties of pearlitic gray cast iron. Mater. Sci. Eng. A 2008, 488, 529–539. [Google Scholar] [CrossRef]
- Jabbari Benham, M.M.; Davami, P.; Varahram, N. Effect of cooling rate on microstructure and mechanical properties of gray cast iron. Mater. Sci. Eng. A 2010, 528, 583–588. [Google Scholar] [CrossRef]
- Willidal, T.; Bauer, W.; Schumacher, P. Stress/strain behavior and fatigue limit of grey cast iron. Mater. Sci. Eng. A 2005, 413–414, 578–582. [Google Scholar] [CrossRef]
- Baicchi, P.; Collini, L.; Riva, E. A methodology for the fatigue design of notched castings in gray cast iron. Eng. Fract. Mech. 2007, 74, 539–548. [Google Scholar] [CrossRef]
- Damir, A.N.; Elkhatib, A.; Nassef, G. Prediction of fatigue life using modal analysis for grey and ductile cast iron. Int. J. Fatigue 2007, 29, 499–507. [Google Scholar] [CrossRef]
- Cueva, G.; Sinatora, A.; Guesser, W.L.; Tschiptschin, A.P. Wear resistance of cast irons used in brake disc rotors. Wear 2003, 255, 1256–1260. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, C.; Pascual, M.; Busquets, D.; Rayón, E. Tribological study of Fe-Cu-Cr-graphite alloy and cast iron railway brake shoes by pin-on-disc technique. Wear 2010, 268, 784–789. [Google Scholar] [CrossRef]
- Hirasata, K.; Hayashi, K.; Inamoyo, Y. Friction and wear of several kinds of cast irons under severe sliding conditions. Wear 2007, 263, 790–800. [Google Scholar] [CrossRef]
- Prasad, B.K. Sliding wear response of cast iron as influenced by microstructural features and test condition. Mater. Sci. Eng. A 2007, 456, 373–385. [Google Scholar] [CrossRef]
- Prasad, B.K. Sliding wear behaviour of a cast iron as affected by test environment and applied load. Ind. Lubr. Tribol. 2009, 61, 161–172. [Google Scholar] [CrossRef]
- Ghasemi, R.; Elmquist, L. A study on graphite extrusion phenomenon under the sliding wear response of cast iron using microindentation and microscratch techniques. Wear 2014, 320, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Carazo, F.D.; Giusti, S.M.; Boccardo, A.D.; Godoy, L.A. Effective properties of nodular cast iron: A multi-scale computational approach. Comput. Mater. Sci. 2014, 82, 378–390. [Google Scholar] [CrossRef]
- Gonzaga, R.A. Influence of ferrite and pearlite content on mechanical properties of ductile cast irons. Mater. Sci. Eng. A 2013, 567, 1–8. [Google Scholar] [CrossRef]
- Li, N.; Xing, S.; Bao, P. Microstructure and Mechanical Properties of Nodular Cast Iron Produced by Melted Metal Die Forging Process. J. Iron Steel Res. Int. 2013, 20, 58–62. [Google Scholar] [CrossRef]
- Ceschini, L.; Morri, A.; Morri, A.; Salsi, E.; Squatrito, R.; Todaro, I.; Tomesani, L. Microstructure and mechanical properties of heavy section ductile iron castings: Experimental and numerical evaluation of effect of cooling rates. Int. J. Cast Met. Res. 2015, 28, 365–374. [Google Scholar] [CrossRef]
- González-Martínez, R.; de la Torre, U.; Ebel, A.; Lacaze, J.; Sertucha, J. Effects of high silicon contents on graphite morphology and room temperature mechanical properties of as-cast ferritic ductile cast irons. Part II—Mechanical properties. Mater. Sci. Eng. A 2018, 712, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Mourujärvi, A.; Widell, K.; Saukkonen, T.; Hänninen, H. Influence of chunky graphite on mechanical and fatigue properties of heavy-section cast iron. Fatigue Fract. Eng. Mater. Struct. 2009, 32, 379–390. [Google Scholar] [CrossRef]
- Hosdez, J.; Limodin, N.; Najjar, D.; Witz, J.-F.; Charkaluk, E.; Osmond, P.; Forré, A.; Szmytka, F. Fatigue crack growth in compacted and spheroidal graphite cast irons. Int. J. Fatigue 2020, 131, 105319. [Google Scholar] [CrossRef]
- Iacoviello, F.; Di Cocco, V.; Bellini, C. Fatigue crack propagation and damaging micromechanisms in Ductile Cast Irons. Int. J. Fatigue 2019, 124, 48–54. [Google Scholar] [CrossRef]
- Mohamed, I.A.; Ibraheem, A.A.; Khashaba, M.I.; Ali, W.Y. Influence of Heat Treatment on Friction and Wear of Ductile Iron: II. Role of Chromium and Nickel. Int. J. Control Autom. Syst. 2014, 3, 10–16. [Google Scholar]
- Ben Tkaya, M.; Mezlini, S.; El Mansori, M.; Zahouani, H. On some tribological effects of graphite nodules in wear mechanism of SG cast iron: Finite element and experimental analysis. Wear 2009, 267, 535–539. [Google Scholar] [CrossRef]
- Pintaude, G.; Bernardes, F.G.; Santos, M.M.; Sinatora, A.; Albertin, E. Mild and severe wear of steels and cast irons in sliding abrasion. Wear 2009, 267, 19–25. [Google Scholar] [CrossRef]
- Wei, M.X.; Wang, S.Q.; Cui, X.H. Comparative research on wear characteristics of spheroidal graphite cast iron and carbon steel. Wear 2012, 274–275, 84–93. [Google Scholar] [CrossRef]
- Panneerselvam, S.; Putatunda, S.K.; Gundlach, R.; Boileau, J. Influence of intercritical austempering on the microstructure and mechanical properties of austempered ductile iron (ADI). Mater. Sci. Eng. A 2017, 694, 72–80. [Google Scholar] [CrossRef]
- Boccardo, A.D.; Dardati, P.M.; Celentano, D.J.; Godoy, L.A.; Górny, M.; Tyraia, E. Numerical Simulation of Austempering Heat Treatment of a Ductile Cast Iron. Metall. Mater. Trans. B 2016, 47, 566–575. [Google Scholar] [CrossRef]
- Putatunda, S.K. Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process. Mater. Sci. Eng. A 2001, 315, 70–80. [Google Scholar] [CrossRef]
- Putatunda, S.K.; Gadicherla, P.K. Effect of Austempering Time on Mechanical Properties of a Low Manganese Austempered Ductile Iron. J. Mater. Eng. Perform. 2000, 9, 193–203. [Google Scholar] [CrossRef]
- Ghaderi, A.R.; Nili Ahmadabadi, M.; Ghasemi, H.M. Effect of graphite morphologies on the tribological behavior of austempered cast iron. Wear 2003, 255, 410–416. [Google Scholar] [CrossRef]
- ASM International. Heat Treating. In ASM Handbook, 9th ed.; ASM International: Materials Park, OH, USA, 1998; Volume 4, pp. 1–926. [Google Scholar]
- Li, Y.; Song, R.; Zhao, Z.; Pei, Y. Effect of three-staged normalizing on the impact wear resistance of 3.23 mass% Cr-Mn-Cu-Si cast iron. Wear 2019, 426–427, 59–67. [Google Scholar] [CrossRef]
- Wassilkowska, A.; Dabrowski, W. Silicon as a component of ferric oxide scale covering ductile iron pipes after annealing. Eng. Fail. Anal. 2021, 125, 105381. [Google Scholar] [CrossRef]
- Vadiraj, A.; Balachandran, G.; Kamaraj, M.; Kazuya, E. Mechanical and wear behavior of quenched and tempered alloyed hypereutectic gray cast iron. Mater. Des. 2011, 32, 2438–2443. [Google Scholar] [CrossRef]
- Wang, B.L.; Morris, D.S.; Farshid, S.; Lortz, S.; Ma, Q.; Wang, C.; Chen, Y.; Sanders, P. Rolling contact fatigue study of chilled and quenched/tempered ductile iron compared with AISI 1080 steel. Wear 2021, 478–479, 203890. [Google Scholar] [CrossRef]
- Steen, W.M.; Mazumder, J. Laser Material Processing, 4th ed.; Springer: London, UK, 2010; pp. 295–317. [Google Scholar]
- Hwang, J.H.; Lee, Y.S.; Kim, D.Y.; Youn, J.G. Laser Surface Hardening of Gray Cast Iron Used for Piston Ring. J. Mater. Eng. Perform. 2002, 11, 294–300. [Google Scholar] [CrossRef]
- Liu, A.; Previtali, B. Laser surface treatment of grey cast iron by high power diode laser. Phys. Procedia 2010, 5, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Barber, G.C.; Wang, R.; Pan, Y. Comparison of Wear Performance of Austempered and Quench-Tempered Gray Cast Irons Enhanced by Laser Hardening Treatment. Appl. Sci. 2020, 10, 3049. [Google Scholar] [CrossRef]
- Wang, B.; Pan, Y.; Liu, Y.; Lyu, N.; Barber, G.C.; Wang, R.; Cui, W.; Qiu, F.; Hu, M. Effects of quench-tempering and laser hardening treatment on wear resistance of gray cast iron. J. Mater. Res. Technol. 2020, 9, 8163–8171. [Google Scholar] [CrossRef]
- Trafford, D.N.H.; Bell, T.; Megaw, J.H.P.C.; Brandsen, A.S. Laser treatment of grey iron. Met. Technol. 1983, 10, 69–77. [Google Scholar] [CrossRef]
- De Oliveira, U.O.B. Laser Treatment of Alloys: Processing, Microstructure and Structural Properties. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2007. [Google Scholar]
- Paczkowska, M. The evaluation of the influence of laser treatment parameters on the type of thermal effects in the surface layer microstructure of gray irons. Opt. Laser Technol. 2016, 76, 143–148. [Google Scholar] [CrossRef]
- Mathur, A.K.; Molian, P.A. Laser Heat Treatment of Cast Irons—Optimization of Process Variables: Part I. J. Eng. Mater. Technol. 1985, 107, 200–207. [Google Scholar] [CrossRef]
- Molian, P.A.; Mathur, A.K. Laser Heat Treatment of Cast Irons—Optimization of Process Variables: Part II. J. Eng. Mater. Technol. 1986, 108, 233–239. [Google Scholar] [CrossRef]
- Chen, C.H.; Ju, C.P.; Rigsbee, J.M. Laser surface modification of ductile iron: Part 1 Microstructure. Mater. Sci. Technol. 1988, 4, 161–166. [Google Scholar] [CrossRef]
- Gadag, S.P.; Srinivasan, M.N.; Mordike, B.L. Effect of laser processing parameters on the structure of ductile iron. Mater. Sci. Eng. A 1995, 196, 145–154. [Google Scholar] [CrossRef]
- Fernández-Vicente, A.; Pellizzari, M.; Arias, J.L. Feasibility of laser surface treatment of pearlitic and bainitic ductile irons for hot rolls. J. Mater. Processing Technol. 2012, 212, 989–1002. [Google Scholar] [CrossRef]
- Molian, P.A.; Baldwin, M. Effects of single-pass laser heat treatment on erosion behavior of cast iron. Wear 1987, 118, 319–327. [Google Scholar] [CrossRef]
- Ghaini, F.M.; Ameri, M.H.; Torkamany, M.J. Surface transformation hardening of ductile cast iron by a 600 w fiber laser. Optik 2020, 203, 163758. [Google Scholar] [CrossRef]
- Chen, C.H.; Ju, C.P.; Rigsbee, J.M. Laser surface modification of ductile iron: Part 2 Wear mechanism. Mater. Sci. Technol. 1988, 4, 167–172. [Google Scholar] [CrossRef]
- Gadag, S.P.; Srinivasan, M.N. Cavitation erosion of laser-melted ductile iron. J. Mater. Process. Technol. 1995, 51, 150–163. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, H. Sliding wear characteristics of austempered ductile iron with and without laser hardening. Wear 1990, 138, 1–12. [Google Scholar]
- Roy, A.; Manna, I. Mathematical modelling of localized melting around graphite nodules during laser surface hardening of austempered ductile iron. Opt. Lasers Eng. 2000, 34, 369–383. [Google Scholar] [CrossRef]
- Roy, A.; Manna, I. Laser surface engineering to improve wear resistance of austempered ductile iron. Mater. Sci. Eng. A 2001, 297, 85–93. [Google Scholar] [CrossRef]
- Zammit, A.; Abela, S.; Betts, J.C.; Grech, M. Discrete spot laser hardening of austempered ductile iron. Surf. Coat. Technol. 2017, 331, 143–152. [Google Scholar] [CrossRef]
- Soriano, C.; Leunda, J.; Lambarri, J.; García Navas, V.; Sanz, C. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades. Appl. Surf. Sci. 2011, 257, 7101–7106. [Google Scholar] [CrossRef]
- Putatunda, S.; Bartosiewicz, L.; Hull, R.J.; Lander, M. Laser Hardening of Austempered Ductile Iron (ADI). Mater. Manuf. Process. 1997, 12, 137–151. [Google Scholar] [CrossRef]
- Zammit, A.; Abela, S.; Betts, J.C.; Michalczewski, R.; Kalbarczyk, M.; Grech, M. Scuffing and rolling contact fatigue resistance of discrete laser spot hardened austempered ductile iron. Wear 2019, 422–423, 100–107. [Google Scholar] [CrossRef]
- Grum, J.; Sturm, R. Microstructure analysis of nodular iron 400-12 after laser surface melt hardening. Mater. Charact. 1996, 37, 81–88. [Google Scholar] [CrossRef]
- Grum, J.; Sturm, R. Comparison of measured and calculated thickness of martensite and ledeburite shells around graphite nodules in the hardened layer of nodular iron after laser surface remelting. Appl. Surf. Sci. 2002, 187, 116–123. [Google Scholar] [CrossRef]
- Grum, J.; Sturm, R. Microstructure variations in the laser surface remelted layer of nodular iron. Int. J. Microstruct. Mater. Prop. 2005, 1, 11–23. [Google Scholar] [CrossRef]
- Benyounis, K.Y.; Fakron, O.M.A.; Abboud, J.H.; Olabi, A.G.; Hashmi, M.J.S. Surface melting of nodular cast iron by Nd-YAG laser and TIG. J. Mater. Process. Technol. 2005, 170, 127–132. [Google Scholar] [CrossRef]
- Alabeedi, K.F.; Abboud, J.H.; Benyounis, K.Y. Microstructure and erosion resistance enhancement of nodular cast iron by laser melting. Wear 2009, 266, 925–933. [Google Scholar] [CrossRef]
- Pagano, N.; Angelini, V.; Ceschini, L.; Campana, G. Laser remelting for enhancing tribological performances of a ductile iron. Procedia CIRP 2016, 41, 987–991. [Google Scholar] [CrossRef] [Green Version]
- Catalán, N.; Ramos-Moore, E.; Boccardo, A.; Celentano, D.; Alam, N.; Walczak, M.; Gunasegaram, D. Surface Laser Treatment on Ferritic Ductile Iron: Effect of Linear Energy on Microstructure, Chemical Composition, and Hardness. Metall. Mater. Trans. B 2021, 52, 755–763. [Google Scholar] [CrossRef]
- Ceschini, L.; Campana, G.; Pagano, N.; Angelini, V. Effect of laser surface treatment on the dry sliding behavior of the EN-GJS400-12 ductile cast iron. Tribol. Int. 2016, 104, 342–351. [Google Scholar] [CrossRef]
- Boccardo, A.D.; Catalán, N.; Celentano, D.J.; Ramos-Moore, E. A Thermo-metallurgical Model for Laser Surface Engineering Treatment of Nodular Cast Iron. Metall. Mater. Trans. B 2021, 52, 854–870. [Google Scholar] [CrossRef]
LST Parameter | Regular Value/Selection |
---|---|
Laser type | CO2, Nd:YAG, fiber (diode) |
Coating (optional) | Graphite, manganese/zinc phosphate |
Shielding gas (optional) | Argon, nitrogen, helium |
Laser power | Fixed, PID controller, linear ramp |
Power distribution | Gaussian, uniform |
Laser scanning velocity | Fixed, single, or multiple passes with overlapping |
Spot geometry | Circular, elliptical, rectangular |
Characterization tests | OM/SEM, macro/micro hardness, GDOES, XRD, wear/erosion resistance, residual stresses |
Cast Iron | Main Challenges |
---|---|
GI | Graphite flakes act as stress raisers in sliding or rolling contact systems; Limited improvement in wear resistance. |
ADI | Susceptible to tempering effect and crack propagation in LSM; Extended costs and processing time, due to pre-austempering stage. |
Pearlitic DI | Matrix carbon enrichment during heat transfer lowers the melting point around graphite nodules and produces local melting; Reduced processing window for hardening without melting. |
Ferritic DI | A lesser amount of pearlite further triggers local melting around graphite nodules; LSM cannot be avoided for significant hardened case depths (>250 µm); Wear resistance is commonly lower than pearlitic DIs under similar operating conditions. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catalán, N.; Ramos-Moore, E.; Boccardo, A.; Celentano, D. Surface Laser Treatment of Cast Irons: A Review. Metals 2022, 12, 562. https://doi.org/10.3390/met12040562
Catalán N, Ramos-Moore E, Boccardo A, Celentano D. Surface Laser Treatment of Cast Irons: A Review. Metals. 2022; 12(4):562. https://doi.org/10.3390/met12040562
Chicago/Turabian StyleCatalán, Néstor, Esteban Ramos-Moore, Adrian Boccardo, and Diego Celentano. 2022. "Surface Laser Treatment of Cast Irons: A Review" Metals 12, no. 4: 562. https://doi.org/10.3390/met12040562
APA StyleCatalán, N., Ramos-Moore, E., Boccardo, A., & Celentano, D. (2022). Surface Laser Treatment of Cast Irons: A Review. Metals, 12(4), 562. https://doi.org/10.3390/met12040562