Numerical Modeling of Shockwaves Driven by High-Energy Particle Beam Radiation in Tungsten-Made Structures
Abstract
:1. Introduction
2. High-Energy Particle Beam Impact
3. Research Method and Procedure
Planar and Cylindrical Waves
4. Tungsten Component Impacted by LHC Proton Beam
Description of the Numerical Model
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brüning, P.; Collier, P.; Lebrun, S.; Myers, R.; Ostojic, J.; Poole, E.; Proudlock, P. LHC Design Report; CERN Yellow Reports: Monographs; CERN: Geneva, Switzerland, 2004. [Google Scholar]
- Apollinari, G.; Alonso, I.B.; Bruning, O.; Fessia, P.; Lamont, M.; Rossi, E.L.; Tavian, L. High-Luminosity Large Hadron Collider (HL-LHC) Technical Design Report v.0.1; CERN Yellow Reports: Monographs 4; CERN: Geneva, Switzerland, 2017. [Google Scholar]
- Assmann, R.; Bailey, R.; Brüning, O.; Sanchez, O.D.; de Rijk, G.; Jimenez, J.M.; Myers, S.; Rossi, L.; Tavian, L.; Todesco, E.; et al. First Thoughts on a Higher-Energy LHC; CERN-ATS-2010-177; CERN: Geneva, Switzerland, 2010. [Google Scholar]
- Abada, A.; the FCC Collaboration; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Fernandez, J.A.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; et al. FCC-hh: The Hadron Collider. Eur. Phys. J. Spec. Top. 2019, 228, 755–1107. [Google Scholar] [CrossRef]
- Beringer, J.; Arguin, J.F.; Barnett, R.M.; Copic, K.; Dahl, O.; Groom, D.E.; Lin, C.J.; Lys, J.; Murayama, H.; Wohl, C.G.; et al. Review of Particle Physics. Phys. Rev. D 2012, 86, 10001. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, N.V. Beam–Materials Interactions. Rev. Accel. Sci. Technol. 2013, 6, 275–290. [Google Scholar] [CrossRef]
- Kalinovskii, A.N.; Mokhov, N.V.; Nikitin, Y.P. Passage of High-Energy Particles through Matter; American Institute of Physics: New York, NY, USA, 1989. [Google Scholar]
- Ferrari, A.; Ranft, J.; Sala, P.R.; Fassò, A. FLUKA: A Multi-Particle Transport Code; CERN-2005-010; CERN Yellow Reports: Monographs, 2005. [CrossRef] [Green Version]
- Battistoni, G.; Cerutti, F.; Fasso, A.; Ferrari, A.; Muraro, S.; Ranft, J.; Roesle, S.; Sala, P.R. The FLUKA Code: Description and Benchmarking, Hadronic Shower Simulation Workshop; Albrow, M., Raja, R., Eds.; American Institute of Physics: New York, NY, USA, 2007. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Dubois, P.A.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, N.V.; James, C.C. The MARS Code System User’s Guide Version 15(2016); Fermi National Accelerator Lab.: Batavia, IL, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L.J.; Durkee, J.; Elson, J.; Fensin, M.; Forster, R.A.; et al. Initial MCNP6 Release Overview. Nucl. Technol. 2012, 180, 298–315. [Google Scholar] [CrossRef]
- Niita, K.; Sato, T.; Iwase, H.; Nose, H.; Nakashima, H.; Sihver, L. PHITS—A particle and heavy ion transport code system. Radiat. Meas. 2006, 41, 1080–1090. [Google Scholar] [CrossRef]
- Fortov, V.E.; Goel, B.; Munz, C.-D.; Ni, A.L.; Shutov, A.; Vorbiev, Y.O.; Fortov, V.E.; Goel, B.; Munz, C.D.; Ni, A.L.; et al. Numerical simulations of nonstationary fronts and interfaces by the Godunov method in moving grids. Nucl. Sci. Eng. 1996, 123, 169. [Google Scholar] [CrossRef]
- ANSYS AUTODYN User Manual; Release 15.0; SAS IP, Inc.: Canonsburg, PA, USA, 2013.
- Gladman, B. Keyword User’s Manual—Volume I—Version 971; LSTC (Livermore Software Technology Corporation): Livermore, CA, USA, 2007; ISBN 0-9778540-2-7. [Google Scholar]
- Tahir, N.A.; Goddard, B.; Kain, V.; Schmidt, R.; Shutov, A.; Lomonosov, I.V.; Piriz, A.R.; Temporal, M.; Hoffmann, D.H.H.; Fortov, V.E. Impact of 7-TeV/c Large Hadron Collider proton beam on a copper target. J. Appl. Phys. 2005, 97, 83532. [Google Scholar] [CrossRef]
- Ryazanov, A.I.; Klaptsov, A.V.; Pavlov, S.A.; Assmann, R.; Ferrari, A.; Schmidt, R. Shock wave propagation near 7 TeV proton beam in LHC collimator materials. In Proceedings of the Workshop on High Intensity High Brightness Hadron Beams 2006 (HB2006), Tsukuba, Japan, 29 May–2 June 2006. [Google Scholar]
- Tahir, N.A.; Schmidt, R.; Brugger, M.; Assmann, R.; Shutov, A.; Lomonosov, I.V.; Gryaznov, V.; Piriz, A.R.; Udrea, S.; Hoffmann, D.H.H.; et al. Generation of warm dense matter and strongly coupled plasmas using the High Radiation on Materials facility at the CERN Super Proton Synchrotron. Phys. Plasmas 2009, 16, 82703. [Google Scholar] [CrossRef] [Green Version]
- Tahir, N.; Schmidt, R.; Brügger, M.; Assmann, R.; Shutov, A.; Lomonosov, I.; Fortov, V.; Piriz, A.R.; Deutsch, C.; Hoffmann, D. Interaction of Super Proton Synchrotron beam with solid copper target: Simulations of future experiments at HiRadMat facility at CERN. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2009, 606, 186–192. [Google Scholar] [CrossRef]
- Tahir, N.; Schmidt, R.; Shutov, A.; Lomonosov, I.; Gryaznov, V.; Piriz, A.; Deutsch, C.; Fortov, V. The Large Hadron Collider and the Super Proton Synchrotron at CERN as tools to Generate Warm Dense Matter and Non-Ideal Plasmas. Contrib. Plasma Phys. 2011, 51, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Dallocchio, A. Study of Thermo-Mechanical Effects Induced in Solids by High Energy Particle Beams: Analytical and Numerical Methods. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2008. [Google Scholar]
- Pasquali, M.; Bertarelli, A.; Accettura, C.; Berthome, E.; Bianchi, L.; Bolz, P.; Carra, F.; Fichera, C.; Frankl, M.I.; Furness, T.; et al. Dynamic Response of Advanced Materials Impacted by Particle Beams: The MultiMat Experiment. J. Dyn. Behav. Mater. 2019, 5, 266–295. [Google Scholar] [CrossRef] [Green Version]
- Cauchi, M.; Assmann, R.W.; Bertarelli, A.; Carra, F.; Cerutti, F.; Lari, L.; Redaelli, S.; Mollicone, P.; Sammut, N. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts. Phys. Rev. Spéc. Top.-Accel. Beams 2015, 18, 41002. [Google Scholar] [CrossRef]
- Martin, C.T.; Perillo-Marcone, A.; Calviani, M.; Muñoz-Cobo, J.-L. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact. Phys. Rev. Accel. Beams 2016, 19, 73402. [Google Scholar] [CrossRef]
- Martin, C.T.; Solieri, N.; Fornasiere, E.; Descarrega, J.B.; Calviani, M.; Espadanal, J.C.; Perillo-Marcone, A.; Spätig, P. First observation of spalling in tantalum at high temperatures induced by high energy proton beam impacts. Eur. J. Mech.-A/Solids 2020, 85, 104149. [Google Scholar] [CrossRef]
- Scapin, M.; Peroni, L.; Dallocchio, A. Damage evaluation in metal structures subjected to high energy deposition due to particle beams. J. Phys. Conf. Ser. 2011, 305, 12062. [Google Scholar] [CrossRef] [Green Version]
- Scapin, M.; Peroni, L.; Dallocchio, A.; Bertarelli, A. Shock Loads Induced on Metal Structures by LHC Proton Beams: Modelling of Thermo-Mechanical Effects. Appl. Mech. Mater. 2011, 82, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Scapin, M.; Peroni, L.; Bertarelli, A.; Dallocchio, A. Numerical simulations of tungsten targets HIT by LHC proton beam. In Proceedings of the 4th International Conference on Computational Methods for Coupled Problems in Science and Engineering COUPLED PROBLEMS 2011, Kos, Greece, 20–22 June 2011; pp. 413–423. [Google Scholar]
- Bertarelli, A.; Boccone, V.; Carra, F.; Cerutti, F.; Dallocchio, A.; Mariani, N.; Peroni, L.; Scapin, M. Limits for beam induced damage: Reckless or too cautious? In Proceedings of the Chamonix 2011 workshop on LHC performance, Chamonix, France, 24–28 January 2011. [Google Scholar]
- Quaranta, E.; Bertarelli, A.; Bruce, R.; Carra, F.; Cerutti, F.; Lechner, A.; Redaelli, S.; Skordis, E.; Gradassi, P. Modeling of beam-induced damage of the LHC tertiary collimators. Phys. Rev. Accel. Beams 2017, 20, 091002. [Google Scholar] [CrossRef] [Green Version]
- Scapin, M.; Peroni, L.; Boccone, V.; Cerutti, F. Effects of high-energy intense multi-bunches proton beam on materials. Comput. Struct. 2014, 141, 74–83. [Google Scholar] [CrossRef]
- Tahir, N.A.; Sancho, J.B.; Shutov, A.; Schmidt, R.; Piriz, A.R. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider. Phys. Rev. Spéc. Top.-Accel. Beams 2012, 15. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Fichera, C.; Mettler, L.; Carra, F.; Schmidt, R.; Tahir, N.A.; Bertarelli, A.; Wollmann, D. Simulation of hydrodynamic tunneling induced by high-energy proton beam in copper by coupling computer codes. Phys. Rev. Accel. Beams 2019, 22, 014501. [Google Scholar] [CrossRef] [Green Version]
- Tahir, N.A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A.R. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components. Phys. Rev. Accel. Beams 2016, 19, 081002. [Google Scholar] [CrossRef] [Green Version]
- Tahir, N.A.; Burkart, F.; Shutov, A.; Schmidt, R.; Wollmann, D.; Piriz, A.R. Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research. Phys. Rev. E 2014, 90, 063112. [Google Scholar] [CrossRef] [PubMed]
- Tahir, N.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. High energy density physics effects predicted in simulations of the CERN HiRadMat beam–target interaction experiments. High Energy Density Phys. 2016, 21, 27–34. [Google Scholar] [CrossRef]
- Bertarelli, A.; Bruce, R.; Carra, F.; Dallocchio, A.; Guinchard, M.; Mariani, N.; Lari, L.; Redaelli, S.; Rossi, A. Updated robustness limits for collimator materials. In Proceedings of the MPP Workshop, Annecy, France, 11–13 March 2013; Volume 108–112. [Google Scholar]
- Efthymiopoulos, I. HiRadMat: A new irradiation facility for material testing at CERN. In Proceedings of the Second IPAC 2011, San Sebastian, Spain, 4–9 September 2011; pp. 1665–1667. [Google Scholar]
- Bertarelli, A.; Berthome, E.; Boccone, V.; Carra, F.; Cerutti, F.; Charitonidis, N.; Charrondiere, C.; Dallocchio, A.; Fernandez, P.; Carmona; et al. An experiment to test advanced materials impacted by intense protonpulses at CERN HiRadMat facility. Nucl. Instrum. Methods Phys. Res. B 2013, 308, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Carra, F.; Bertarelli, A.; Berthomé, E.; Fichera, C.; Furness, T.; Guinchard, M.; Mettler, L.K.; Portelli, M.; Redaelli, S.; De Frutos, O.S. The “Multimat” experiment at CERN HiRadMat facility: Advanced testing of novel materials and instrumentation for HL-LHC collimators. J. Phys. Conf. Ser. 2017, 874, 012001. [Google Scholar] [CrossRef] [Green Version]
- AMartin, T.; Perillo-Marcone, A.; Calviani, M.; Gentini, L.; Butcher, M.; Muñoz-Cobo, J.L. Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results. Phys. Rev. Accel. Beams 2019, 22, 13401. [Google Scholar] [CrossRef] [Green Version]
- Bertarelli, A.; Dallocchio, A.; Garlasche, M.; Gentini, L.; Gradassi, P.; Guinchard, M.; Redaelli, S.; Rossi, A.; Sacristan De Frutos, O.; Carra, F.; et al. Novel materials for collimators at LHC and its upgrades. In Proceedings of the HB2014, East Lansing, MI, USA, 10–14 November 2014; pp. 438–442, ISBN 978-3-95450-173-1. [Google Scholar]
- Martin, C.T.; Calviani, M.; Perillo-Marcone, A.; Ferriere, R.; Solieri, N.; Butcher, M.; Grec, L.-M.; Espadanal, J.C. Scaled prototype of a tantalum target embedded in expanded graphite for antiproton production: Design, manufacturing, and testing under proton beam impacts. Phys. Rev. Accel. Beams 2018, 21, 073001. [Google Scholar] [CrossRef] [Green Version]
- Torregrosa, C.; Calviani, M.; Solieri, N.; Canhoto, J.; Perillo-Marcone, A.; Ferriere, R.; Fornasiere, E.; Busom, J.; Dickinson, B. First prototypes of the new design of the CERN’s antiproton production targetMater. Des. Process. Commun. 2019, 1, e38. [Google Scholar] [CrossRef] [Green Version]
- Carra, F.; Charrondiere, C.; Guinchard, M.; de Frutos, O.S. Design and Construction of an Instrumentation System to Capture the Response of Advanced Materials Impacted by Intense Proton Pulses. Shock Vib. 2021, 2021, 1–20. [Google Scholar] [CrossRef]
- Gobbi, G.; Bertarelli, A.; Carra, F.; Guardia-Valenzuela, J.; Redaelli, S. Novel LHC collimator materials: High-energy Hadron beam impact tests and nondestructive postirradiation examination. Mech. Adv. Mater. Struct. 2019, 27, 1518–1530. [Google Scholar] [CrossRef] [Green Version]
- Portelli, M.; Pasquali, M.; Carra, F.; Bertarelli, A.; Mollicone, P.; Sammut, N.; de Frutos, Ó.S.; Valenzuela, J.G.; Neubauer, E.; Kitzmantel, M.; et al. Thermomechanical Characterisation of Copper Diamond and Benchmarking with the MultiMat Experiment. Shock Vib. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Meyers, M.A. Dynamic Behaviour of Materials; J. Wiley & Sons: Hoboken, NY, USA, 1994; ISBN 047158262. [Google Scholar]
- Zukas, A.J. High Velocity Impact Dynamics; J. Wiley & Sons: New York, NY, USA, 1990; ISBN 0471514446. [Google Scholar]
- Zukas, A.J. Introduction to Hydrocodes; Elsevier Science & Technology: Amsterdam, The Netherlands, 2004; ISBN 0080443486. [Google Scholar]
- Morena, A.; Peroni, L. Numerical Simulations of Laser-Induced Shock Experiments on Graphite. Materials 2021, 14, 7079. [Google Scholar] [CrossRef]
- Davis, I.L. Wave Propagation in Solids and Fluids; Springer: New York, NY, USA, 1998; ISBN I3 978-1-4612-8390-4. [Google Scholar] [CrossRef]
- Scapin, M.; Peroni, L.; Dallocchio, A. Effects induced by LHC high energy beam in copper structures. J. Nucl. Mater. 2012, 420, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Scapin, M.; Peroni, L.; Dallocchio, A. Thermo-Mechanical Modelling of High Energy Particle Beam Impacts. In Numerical Modeling of Materials under Extreme Conditions; Springer: Berlin, Heidelberg, 2014; pp. 87–106. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Tarabay, A.; Seaman, L.; Curran, D.R.; Kanel, G.I.; Razorenov, S.V.; Utkin, A.V. Spall Fracture; Springer: New York, NY, USA, 2003; ISBN 0-387-95500-3. [Google Scholar]
- Lennon, A.; Ramesh, K. The thermoviscoplastic response of polycrystalline tungsten in compression. Mater. Sci. Eng. A 2000, 276, 9–21. [Google Scholar] [CrossRef]
- Kerley, G.I. Equations of State for Be, Ni, W, and AU; SANDIA REPORT SAND 2003-3784; Sandia National Laboratories: Albuquerque, NM, USA, 2003. [Google Scholar]
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
ρ0 | 19,255 | kg/m3 | 1 × 10−3 | s−1 | |
G | 1.6 × 1011 | Pa | m | 0.41 | - |
ν | 0.33 | - | Tmelt | 3683 | K |
A | 3.30 × 108 | Pa | Troom | 300 | K |
B | 1.03 × 109 | Pa | cp | 135.68 | J/(kg K) |
n | 0.02 | - | Pspall | −1.2 × 109 | Pa |
C | 0.03 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scapin, M.; Peroni, L. Numerical Modeling of Shockwaves Driven by High-Energy Particle Beam Radiation in Tungsten-Made Structures. Metals 2022, 12, 670. https://doi.org/10.3390/met12040670
Scapin M, Peroni L. Numerical Modeling of Shockwaves Driven by High-Energy Particle Beam Radiation in Tungsten-Made Structures. Metals. 2022; 12(4):670. https://doi.org/10.3390/met12040670
Chicago/Turabian StyleScapin, Martina, and Lorenzo Peroni. 2022. "Numerical Modeling of Shockwaves Driven by High-Energy Particle Beam Radiation in Tungsten-Made Structures" Metals 12, no. 4: 670. https://doi.org/10.3390/met12040670
APA StyleScapin, M., & Peroni, L. (2022). Numerical Modeling of Shockwaves Driven by High-Energy Particle Beam Radiation in Tungsten-Made Structures. Metals, 12(4), 670. https://doi.org/10.3390/met12040670