Surface Damage and Microstructure Evolution of Yttria Particle-Reinforced Tungsten Plate during Transient Laser Thermal Shock
Abstract
:1. Introduction
2. Materials and Experiment
3. Results and Discussion
3.1. Initial Samples before Thermal Shock
3.2. The Samples after Thermal Shock
4. Conclusions
- (1)
- The cracking threshold of the rolled and fully recrystallized samples is about 0.40~0.48 GW/m2. The degree of surface damage of the samples aggravates with the increased laser power density. What is more, cracking, or even melting damage, could be observed on the surface and be accelerated by the process of recrystallization, resulting in the degradation of the ability to withstand the thermal shock of the material;
- (2)
- The average crack width with power density increases overall, but there is an abnormality that the average crack width decreases when the power density increases from 0.40 to 0.48 GW/m2. In addition, the average crack width of the fully recrystallized sample is always wider than that of the rolled sample, no matter what the power density is. Furthermore, the average crack width on the surface of the fully recrystallized sample increases sharply with the increased power density;
- (3)
- Yttria particles have the ability to inhibit crack propagation to a certain extent at low-power densities. In the case of high-power densities, the heat-loading region melted, and most of the Yttria particles were pushed into the HAZ, contributing to the fewer particles and coarser cracks in the molten zone;
- (4)
- Plenty of columnar grains appear in the molten zone, and the cracks in the zone are intergranular fractures at a power density of 0.64 GW/m2. What is more, the width of the columnar grains is closely associated with the grain size of the initial material. The columnar grains formed in the rolled samples are finer and more numerous, mainly consisting of grains with the orientation of <100> // ND, <111> // ND, and <110> // RD. On the contrary, the columnar grains formed in the fully recrystallized samples are coarser. The grains with an orientation of <110> // RD and <100> // ND are significantly enhanced and weakened, respectively, generating the new grains with an orientation of <332> // ND and <411> // TD.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linsmeier, C.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; et al. Development of advanced high heat flux and plasma-facing materials. Nucl. Fusion. 2017, 57, 092007. [Google Scholar] [CrossRef]
- Linke, J.; Du, J.; Loewenhoff, T.; Pintsuk, G.; Spilker, B.; Steudel, I.; Wirtz, M. Challenges for plasma-facing components in nuclear fusion. Matter Radiat. Extrem. 2019, 4, 056201. [Google Scholar] [CrossRef] [Green Version]
- Han, X.Y.; Liu, X.L.; Wang, D.Z.; Wu, Z.Z.; Duan, B.H. Copper-based tungsten coating by CVD: Microstructure, thermal shock resistance and interfacial bond force. Surf. Coat. Tech. 2021, 426, 127778. [Google Scholar] [CrossRef]
- Yao, G.; Chen, H.Y.; Zhao, Z.H.; Luo, L.M.; Ma, Y.; Cheng, J.G.; Zan, X.; Xu, Q.; Wu, Y.C. The superior thermal stability and irradiation resistance capacities of tungsten composites synthesized by simple second-phase particle component modulation. J. Nucl. Mater. 2022, 561, 153522. [Google Scholar] [CrossRef]
- Koike, A.; Yamazaki, S.; Wada, T.; Sun, F.; Yoshida, N.; Hanada, K.; Oya, Y. Evaluation of hydrogen retention behavior for damaged tungsten exposed to hydrogen plasma at QUEST with high temperature wall. Fusion Eng. Des. 2022, 176, 113020. [Google Scholar] [CrossRef]
- Guan, W.; Nogami, S.; Fukuda, M.; Sakata, A.; Hasegawa, A. Effect of Grain Structure Anisotropy and Recrystallization on Tensile Properties of Swaged Tungsten Rod. Plasma Fusion Res. 2017, 10, 1405073. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Ren, D.Y.; Zan, X.; Luo, L.M.; Zhu, X.Y.; Wu, Y.C. Recrystallization behavior of pure tungsten hot-rolled with high accumulated strain during annealing at 1250 °C–1350 °C. Mater. Sci. Eng. A-Struct. 2021, 806, 140828. [Google Scholar] [CrossRef]
- Zhang, X.X.; Gong, Z.; Huang, J.J.; Yu, B. Thermal shock resistance of tungsten with various deformation degrees under transient high heat flux. Mater. Res. Express. 2020, 7, 066503. [Google Scholar] [CrossRef]
- Zan, X.; Yan, J.; Sun, H.T.; Wang, K.; Lian, Y.Y.; Tan, X.Y.; Luo, L.M.; Liu, X.; Wu, X.C. Surface damage during transient thermal load of 50% thickness reduced W-2% (Vol.) Y2O3 sheet with different recrystallization volume fraction. Int. J. Refract. Met. Hard Mater. 2020, 88, 105197. [Google Scholar] [CrossRef]
- Huber, A.; Arakcheev, A.; Sergienko, G.; Steudel, I.; Wirtz, M.; Burdakov, A.V.; Coenen, J.W.; Kreter, A.; Linke, J.; Mertens, P.; et al. Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten. Phys. Scr. 2014, T159, 014005. [Google Scholar] [CrossRef] [Green Version]
- Suslova, A.; EI-Atwani, O.; Sagapuram, D.; Hassanein, A. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples. Sci. Rep. 2014, 4, 6845. [Google Scholar] [CrossRef] [PubMed]
- Kurishita, H.; Matsuo, S.; Arakawa, H.; Kobayashi, S.; Nakai, K.; Takida, T.; Takebe, K.; Kawai, M. Superplastic deformation in W-0.5 wt.% TiC with approximately 0.1 mu m grain size. Mat. Sci. Eng. A-Struct. 2008, 477, 162–167. [Google Scholar] [CrossRef]
- Kurishita, H.; Matsuo, S.; Arakawa, H.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Takida, T.; Kato, M.; Kawai, M.; Yoshida, N. Development of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance. J. Nucl. Mater. 2010, 398, 87–92. [Google Scholar] [CrossRef]
- Du, J.; Höschen, T.; Rasinski, M.; Wurster, S.; Grosinger, W.; You, J.H. Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings. Compos. Sci. Technol. 2010, 70, 1482–1489. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Höschen, T.; Rasinski, M.; You, J.H. Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces. Mater. Sci. Eng. A-Struct. 2010, 527, 1623–1629. [Google Scholar] [CrossRef] [Green Version]
- Hobe, J.; Gumbsch, P. On the potential of tungsten-vanadium composites for high temperature application with wide-range thermal operation window. J. Nucl. Mater. 2010, 400, 218–231. [Google Scholar] [CrossRef]
- Lian, Y.Y.; Liu, X.; Feng, F.; Song, J.P.; Yan, B.Y.; Wang, Y.M.; Wang, J.B.; Chen, J.M. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging. Phys. Scr. 2017, T170, 0140440. [Google Scholar] [CrossRef]
- Zhang, T.; Du, W.Y.; Zhan, C.Y.; Wang, M.M.; Deng, H.W.; Xie, Z.M.; Li, H. The high thermal stability induced by a synergistic effect of ZrC nanoparticles and Re solution in W matrix in hot rolled tungsten alloy. Nucl. Eng. Technol. 2022. [Google Scholar] [CrossRef]
- Zhao, B.L.; Xia, Y.P.; Zhang, L.F.; Ke, J.G.; Cheng, X.; Xie, Z.M.; Liu, R.; Miao, S.; Hao, T.; Wu, X.B.; et al. Effects of rolling reduction on microstructural evolution and mechanical properties of W-0.5 wt%ZrC alloys. Mater. Sci. Eng. A-Struct. 2022, 830, 142310. [Google Scholar] [CrossRef]
- Shi, J.; Luo, L.M.; Wang, S.; Pan, W.Q.; Xu, Q.; Zan, X.; Zhu, X.Y.; Cheng, J.G.; Wu, Y.C. Preparation of TiC-doped W-Ti alloy and heat flux performance test under laser beam facility. Fusion Eng. Des. 2018, 126, 79–86. [Google Scholar] [CrossRef]
- Li, L.; Fan, J.L.; Tian, L.M.; Cheng, H.C.; Zhang, H.B. Modification of the interface and its influence on the performance of W-6 wt% TiC composite. Mater. Sci. Eng. A-Struct. 2021, 819, 141442. [Google Scholar] [CrossRef]
- Xie, Z.M.; Miao, S.; Zhang, T.; Liu, R.; Wang, X.P.; Fang, Q.F.; Hao, T.; Zhuang, Z.; Liu, C.S.; Lian, Y.Y.; et al. Recrystallization behavior and thermal shock resistance of the W-1.0 wt% TaC alloy. J. Nucl. Mater. 2018, 501, 282–292. [Google Scholar] [CrossRef]
- Yang, J.J.; Chen, G.; Chen, Z.; Mu, X.D.; Yu, Y.; Zhang, L.; Li, X.Y.; Qu, X.H.; Qin, M.L. Effects of doping route on microstructure and mechanical properties of W−1.0wt.%La2O3 alloys. T. Nonferr. Metal. Soc. 2020, 30, 3296–3306. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, L.M.; Zhu, X.Y.; Chen, H.Y.; Chen, J.L.; Zan, X.; Cheng, J.G.; Wu, Y.C. Effect of doped Lu2O3 on the microstructures and properties of tungsten alloy prepared by spark plasma sintering. J. Nucl. Mater. 2015, 456, 316–320. [Google Scholar] [CrossRef]
- Lv, Y.Y.; Han, Y.; Zhao, S.Q.; Du, Z.Y.; Fan, J.L. Nano-in-situ-composite ultrafine-grained W-Y2O3 materials: Microstructure, mechanical properties and high heat load performances. J. Alloy. Compd. 2021, 855, 157366. [Google Scholar] [CrossRef]
- Wang, J.F.; Zuo, D.W.; Zhu, L.; Li, W.W.; Tu, Z.B.; Dai, S. Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2018, 71, 167–174. [Google Scholar] [CrossRef]
- Yao, G.; Liu, X.P.; Zhao, Z.H.; Luo, L.M.; Cheng, J.G.; Zan, X.; Wang, Z.M.; Xu, Q.; Wu, Y.C. Excellent performance of W–Y2O3 composite via powder process improvement and Y2O3 refinement. Mater. Design. 2021, 212, 110249. [Google Scholar] [CrossRef]
- Tan, X.Y.; Luo, L.M.; Chen, H.Y.; Zhu, X.Y.; Zan, X.; Luo, G.N.; Chen, J.L.; Li, P.; Cheng, J.G.; Liu, D.P.; et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation. Sci. Rep. 2015, 5, 12755. [Google Scholar] [CrossRef]
- Wang, K.; Ren, D.Y.; Zan, X.; Luo, L.M.; Pantleon, W.; Wu, Y.C. Evolution of microstructure and texture in a warm-rolled yttria dispersion-strengthened tungsten plate during annealing in the temperature range between 1200 degrees C and 1350 degrees C. J. Alloy. Compd. 2021, 883, 160767. [Google Scholar] [CrossRef]
- Huber, A.; Burdakov, A.; Zlobinski, M.; Wirtz, M.; Coenen, J.W.; Linke, J.; Mertens, P.; Philipps, V.; Pintsuk, G.; Schweer, B.; et al. Investigation of the Impact on Tungsten of Transient Heat Loads Induced by Laser Irradiation, Electron Beams and Plasma Guns. Fusion Sci. Technol. 2013, 63, 197–200. [Google Scholar] [CrossRef]
- Liu, X.; Lian, Y.Y.; Chen, L.; Chen, Z.K.; Chen, J.M.; Duan, X.R.; Fan, J.L.; Song, J.P. Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys. J. Nucl. Mater. 2015, 463, 166–169. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, J.L.; Yun, B. Simulative Study of Evolution Behavior of Transverse Surface Crack in Rolling Process. Adv. Mater. Res. 2012, 403–408, 88–92. [Google Scholar] [CrossRef]
- Yao, G.; Tan, X.Y.; Luo, L.M.; Hong, K.J.; Zan, X.; Xu, Q.; Zhu, X.Y.; Lian, Y.Y.; Liu, X.; Wu, Y.C. Surface damage evolution during transient thermal shock of W-2%vol Y2O3 composite material in different surfaces. Fusion Eng. Des. 2019, 139, 86–95. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, Z.M.; Yang, J.F.; Hao, T.; Liu, C.S. The thermal stability of dispersion-strengthened tungsten as plasma-facing materials: A short review. Tungsten. 2019, 1, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Yamashita, S.; Miyamoto, Y.; Motoi, D.; Okita, T.; Hoashi, E.; Ibano, K.; Ueda, Y. In-situ measurement of surface modifications of tungsten exposed to pulsed high heat flux for divertor design in tokamak-type fusion nuclear reactors. Fusion Eng. Des. 2020, 161, 112042. [Google Scholar] [CrossRef]
- Okita, T.; Matsuda, Y.; Saito, S.; Hoashi, E.; Ibano, K.; Ueda, Y. Observation of surface deformation of tungsten exposed to single pulsed high heat flux and magnetic field for divertor design. Fusion Eng. Des. 2021, 171, 112547. [Google Scholar] [CrossRef]
- Farid, N.; Zhao, D.; Oderji, H.Y.; Ding, H. Cracking and damage behavior of tungsten under ELM’s like energy loads using millisecond laser pulses. J. Nucl. Mater. 2015, 463, 241–245. [Google Scholar] [CrossRef]
- Bazylev, B.; Janeschitz, G.; Landman, I.; Loarte, A.; Klimov, N.S.; Podkovyrovd, V.L.; Safronov, V.M. Experimental and theoretical investigation of droplet emission from tungsten melt layer. Fusion Eng. Des. 2009, 84, 441–445. [Google Scholar] [CrossRef]
- Uytdenhouwen, I.; Decreton, M.; Hirai, T.; Linke, J.; Pintsuk, G.; Van Oost, G. Influence of recrystallization on thermal shock resistance of various tungsten grades. J. Nucl. Mater. 2007, 363, 1099–1103. [Google Scholar] [CrossRef]
- Pintsuk, G.; Uytdenhouwen, I. Thermo-mechanical and thermal shock characterization of potassium doped tungsten. Int. J. Refract. Met. Hard Mater. 2010, 28, 661–668. [Google Scholar] [CrossRef]
Parameter/(Unit) | Values | ||||
---|---|---|---|---|---|
Frequency/(Hz) | 15 | ||||
Laser point diameter/(mm) | 0.6 | ||||
Irradiation time/(ms) | 2 | ||||
Flow rate of H2/(L·min−1) | 10 | ||||
Current/(A) | 60 | 75 | 90 | 105 | 120 |
Power density/(GW·m−2) | 0.32 | 0.40 | 0.48 | 0.56 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, D.; Xi, Y.; Yan, J.; Zan, X.; Luo, L.; Wu, Y. Surface Damage and Microstructure Evolution of Yttria Particle-Reinforced Tungsten Plate during Transient Laser Thermal Shock. Metals 2022, 12, 686. https://doi.org/10.3390/met12040686
Ren D, Xi Y, Yan J, Zan X, Luo L, Wu Y. Surface Damage and Microstructure Evolution of Yttria Particle-Reinforced Tungsten Plate during Transient Laser Thermal Shock. Metals. 2022; 12(4):686. https://doi.org/10.3390/met12040686
Chicago/Turabian StyleRen, Daya, Ya Xi, Jie Yan, Xiang Zan, Laima Luo, and Yucheng Wu. 2022. "Surface Damage and Microstructure Evolution of Yttria Particle-Reinforced Tungsten Plate during Transient Laser Thermal Shock" Metals 12, no. 4: 686. https://doi.org/10.3390/met12040686
APA StyleRen, D., Xi, Y., Yan, J., Zan, X., Luo, L., & Wu, Y. (2022). Surface Damage and Microstructure Evolution of Yttria Particle-Reinforced Tungsten Plate during Transient Laser Thermal Shock. Metals, 12(4), 686. https://doi.org/10.3390/met12040686