Cluster Hardening Effects on Twinning in Mg-Zn-Ca Alloys
Abstract
:1. Introduction
2. Experimental Methods
2.1. Material Synthesis
2.2. Microstructural Characterization and Mechanical Test
2.3. Experimental Observations
3. Computational Procedures
4. Results and Discussion
4.1. Effect of the Zn/Ca Ratio
4.2. Effect of the Cluster Size and Cluster Concentration
5. Conclusions
- (1)
- Increasing the Ca content can aggravate the lattice distortion of clusters and results in a stronger hardening effect. Furthermore, the cluster hardening effect is also in a positive relationship with the size and concentration of the clusters.
- (2)
- The attractive effect of clusters on the TB is identified. The attractive force increases with the Ca content and size of the clusters.
- (3)
- Although the twin boundary is eventually able to bypass the clusters, basal dislocations are left behind, which causes a local plastic relaxation.
- (4)
- The Zn:Ca ratio in the cluster is found to play a more significant role than the cluster size in impeding TB migration.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bettles, C.; Barnett, M. Introduction. In Advances in Wrought Magnesium Alloys; Bettles, C., Barnett, M., Eds.; Woodhead Publishing: Melbourne, Australia, 2012; pp. 12–13. ISBN 978-1-84569-968-0. [Google Scholar]
- Pollock, T.M. Weight Loss with Magnesium Alloys. Science 2010, 328, 986. [Google Scholar] [CrossRef] [PubMed]
- Christian, J.W.; Mahajan, S. Deformation Twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Wang, J.; Hoagland, R.G.; Hirth, J.P.; Capolungo, L.; Beyerlein, I.J.; Tomé, C.N. Nucleation of a (-1012) Twin in Hexagonal Close-Packed Crystals. Scr. Mater. 2009, 61, 903–906. [Google Scholar] [CrossRef]
- Suh, B.-C.; Shim, M.-S.; Shin, K.S.; Kim, N.J. Current Issues in Magnesium Sheet Alloys: Where Do We Go from Here? Scr. Mater. 2014, 84–85, 1–6. [Google Scholar] [CrossRef]
- Kim, N.J. Critical Assessment 6: Magnesium Sheet Alloys: Viable Alternatives to Steels? Mater. Sci. Technol. 2014, 30, 1925–1928. [Google Scholar] [CrossRef]
- Suh, B.-C.; Kim, J.H.; Bae, J.H.; Hwang, J.H.; Shim, M.-S.; Kim, N.J. Effect of Sn Addition on the Microstructure and Deformation Behavior of Mg-3Al Alloy. Acta Mater. 2017, 124, 268–279. [Google Scholar] [CrossRef]
- Nie, J.F.; Zhu, Y.M.; Liu, J.Z.; Fang, X.Y. Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science 2013, 340, 957. [Google Scholar] [CrossRef]
- Xin, Y.; Zhang, Y.; Yu, H.; Chen, H.; Liu, Q. The Different Effects of Solute Segregation at Twin Boundaries on Mechanical Behaviors of Twinning and Detwinning. Mater. Sci. Eng. A 2015, 644, 365–373. [Google Scholar] [CrossRef]
- Pei, Z.; Li, R.; Nie, J.F.; Morris, J.R. First-Principles Study of the Solute Segregation in Twin Boundaries in Mg and Possible Descriptors for Mechanical Properties. Mater. Des. 2019, 165, 107574. [Google Scholar] [CrossRef]
- Hooshmand, M.S.; Ghazisaeidi, M. Solute/Twin Boundary Interaction as a New Atomic-Scale Mechanism for Dynamic Strain Aging. Acta Mater. 2020, 188, 711–719. [Google Scholar] [CrossRef]
- Vaid, A.; Guénolé, J.; Prakash, A.; Korte-Kerzel, S.; Bitzek, E. Atomistic Simulations of Basal Dislocations in Mg Interacting with Mg17Al12 Precipitates. Materialia 2019, 7, 100355. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.; Li, B.; Horstemeyer, M.F. Interaction between Prismatic Slip and a Mg17Al12 Precipitate in Magnesium. Comput. Mater. Sci. 2013, 79, 534–539. [Google Scholar] [CrossRef]
- Fan, H.; Zhu, Y.; El-Awady, J.A.; Raabe, D. Precipitation Hardening Effects on Extension Twinning in Magnesium Alloys. Int. J. Plast. 2018, 106, 186–202. [Google Scholar] [CrossRef]
- Tang, X.Z.; Guo, Y.F. The Engulfment of Precipitate by Extension Twinning in Mg–Al Alloy. Scr. Mater. 2020, 188, 195–199. [Google Scholar] [CrossRef]
- Nie, J.F.; Wilson, N.C.; Zhu, Y.M.; Xu, Z. Solute Clusters and GP Zones in Binary Mg-RE Alloys. Acta Mater. 2016, 106, 260–271. [Google Scholar] [CrossRef]
- Bugnet, M.; Kula, A.; Niewczas, M.; Botton, G.A. Segregation and Clustering of Solutes at Grain Boundaries in Mg-Rare Earth Solid Solutions. Acta Mater. 2014, 79, 66–73. [Google Scholar] [CrossRef]
- Guo, F.; Pei, R.; Jiang, L.; Zhang, D.; Korte-Kerzel, S.; Al-Samman, T. The Role of Recrystallization and Grain Growth in Optimizing the Sheet Texture of Magnesium Alloys with Calcium Addition during Annealing. J. Magnes. Alloy. 2020, 8, 252–268. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Bian, M.Z.; Xu, S.W.; Davies, C.H.J.; Birbilis, N.; Nie, J.F. Effects of Dilute Additions of Zn and Ca on Ductility of Magnesium Alloy Sheet. Mater. Sci. Eng. A 2016, 674, 459–471. [Google Scholar] [CrossRef]
- Pan, H.; Yang, C.; Yang, Y.; Dai, Y.; Zhou, D.; Chai, L.; Huang, Q.; Yang, Q.; Liu, S.; Ren, Y.; et al. Ultra-Fine Grain Size and Exceptionally High Strength in Dilute Mg–Ca Alloys Achieved by Conventional One-Step Extrusion. Mater. Lett. 2019, 237, 65–68. [Google Scholar] [CrossRef]
- Zhang, A.; Kang, R.; Wu, L.; Pan, H.; Xie, H.; Huang, Q.; Liu, Y.; Ai, Z.; Ma, L.; Ren, Y.; et al. A New Rare-Earth-Free Mg-Sn-Ca-Mn Wrought Alloy with Ultra-High Strength and Good Ductility. Mater. Sci. Eng. A 2019, 754, 269–274. [Google Scholar] [CrossRef]
- Pan, H.; Kang, R.; Li, J.; Xie, H.; Zeng, Z.; Huang, Q.; Yang, C.; Ren, Y.; Qin, G. Mechanistic Investigation of a Low-Alloy Mg–Ca-Based Extrusion Alloy with High Strength–Ductility Synergy. Acta Mater. 2020, 186, 278–290. [Google Scholar] [CrossRef]
- Wasiur-Rahman, S.; Medraj, M. Critical Assessment and Thermodynamic Modeling of the Binary Mg-Zn, Ca-Zn and Ternary Mg-Ca-Zn Systems. Intermetallics 2009, 17, 847–864. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Zhu, Y.M.; Bian, M.Z.; Xu, S.W.; Davies, C.H.J.; Birbilis, N.; Nie, J.F. Annealing Strengthening in a Dilute Mg-Zn-Ca Sheet Alloy. Scr. Mater. 2015, 107, 127–130. [Google Scholar] [CrossRef]
- Liu, C.; Chen, X.; Chen, J.; Atrens, A.; Pan, F. The Effects of Ca and Mn on the Microstructure, Texture and Mechanical Properties of Mg-4 Zn Alloy. J. Magnes. Alloy. 2020, 9, 1084–1097. [Google Scholar] [CrossRef]
- Nandy, S.; Tsai, S.P.; Stephenson, L.; Raabe, D.; Zaefferer, S. The Role of Ca, Al and Zn on Room Temperature Ductility and Grain Boundary Cohesion of Magnesium. J. Magnes. Alloy. 2021, 9, 1521–1536. [Google Scholar] [CrossRef]
- Mostaed, E.; Sikora-Jasinska, M.; Wang, L.; Mostaed, A.; Reaney, I.M.; Drelich, J.W. Tailoring the Mechanical and Degradation Performance of Mg-2.0Zn-0.5Ca-0.4Mn Alloy Through Microstructure Design. JOM 2020, 72, 1880–1891. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, G.; Wang, L.; Vasilev, E.; Park, J.-S.; Sha, G.; Zeng, X.; Knezevic, M. Origins of High Ductility Exhibited by an Extruded Magnesium Alloy Mg-1.8Zn-0.2Ca: Experiments and Crystal Plasticity Modeling. J. Mater. Sci. Technol. 2021, 84, 27–42. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, G.; Wang, L.; Zhu, Q.; Vasilev, E.; Zeng, X.; Knezevic, M. Dislocation-Induced Plastic Instability in a Rare Earth Containing Magnesium Alloy. Materialia 2021, 15, 101038. [Google Scholar] [CrossRef]
- Song, B.; Pan, H.; Ren, W.; Guo, N.; Wu, Z.; Xin, R. Tension-Compression Asymmetry of a Rolled Mg-Y-Nd Alloy. Met. Mater. Int. 2017, 23, 683–690. [Google Scholar] [CrossRef]
- Nie, J.F.; Shin, K.S.; Zeng, Z.R. Microstructure, Deformation, and Property of Wrought Magnesium Alloys. Metall. Mater. Trans. A 2020, 51, 6045–6109. [Google Scholar] [CrossRef]
- Tong, L.B.; Zheng, M.Y.; Kamado, S.; Zhang, D.P.; Meng, J.; Cheng, L.R.; Zhang, H.J. Reducing the Tension-Compression Yield Asymmetry of Extruded Mg-Zn-Ca Alloy via Equal Channel Angular Pressing. J. Magnes. Alloy 2015, 3, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo-Manrique, P.; Robson, J.D.; Pérez-Prado, M.T. Precipitation Strengthening and Reversed Yield Stress Asymmetry in Mg Alloys Containing Rare-Earth Elements: A Quantitative Study. Acta Mater. 2017, 124, 456–467. [Google Scholar] [CrossRef]
- Dobroň, P.; Hegedüs, M.; Olejňák, J.; Drozdenko, D.; Horváth, K.; Bohlen, J. Influence of Thermomechanical Treatment on Tension–Compression Yield Asymmetry of Extruded Mg–Zn–Ca Alloy. In Magnesium Technology; Joshi, V., Jordon, J., Orlov, D., Neelameggham, N., Eds.; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Yin, D.D.; Boehlert, C.J.; Long, L.J.; Huang, G.H.; Zhou, H.; Zheng, J.; Wang, Q.D. Tension-Compression Asymmetry and the Underlying Slip/Twinning Activity in Extruded Mg-Y Sheets. Int. J. Plast. 2021, 136, 102878. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.-S.; Seol, D.; Lee, B.-J. Modified Embedded-Atom Method Interatomic Potentials for Mg–Al–Ca and Mg–Al–Zn Ternary Systems. J. Magnes. Alloy 2021, 9, 317–335. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Luque, A.; Ghazisaeidi, M.; Curtin, W.A. Deformation Modes in Magnesium (0 0 0 1) and (011-1) Single Crystals: Simulations versus Experiments. Model. Simul. Mater. Sci. Eng. 2013, 21, 045010. [Google Scholar] [CrossRef]
- Dou, Y.; Luo, H.; Zhang, J. The Effects of Yttrium on the {10-12} Twinning Behaviour in Magnesium Alloys: A Molecular Dynamics Study. Philos. Mag. Lett. 2020, 100, 224–234. [Google Scholar] [CrossRef]
- Esteban-Manzanares, G.; Ma, A.; Papadimitriou, I.; Martínez, E.; Llorca, J. Basal Dislocation/Precipitate Interactions in Mg-Al Alloys: An Atomistic Investigation. Model. Simul. Mater. Sci. Eng. 2019, 27, 075003. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Wang, Q.; Tian, X.; El-Awady, J.A. Temperature Effects on the Mobility of Pyramidal <c+a> dislocations in Magnesium. Scr. Mater. 2017, 127, 68–71. [Google Scholar] [CrossRef]
- El Kadiri, H.; Barrett, C.D.; Wang, J.; Tomé, C.N. Why Are {101−2} Twins Profuse in Magnesium? Acta Mater. 2015, 85, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Beyerlein, I.J.; Tomé, C.N. Reactions of Lattice Dislocations with Grain Boundaries in Mg: Implications on the Micro Scale from Atomic-Scale Calculations. Int. J. Plast. 2014, 56, 156–172. [Google Scholar] [CrossRef]
- Fan, H.; Zhu, Y.; Wang, Q. Effect of Precipitate Orientation on the Twinning Deformation in Magnesium Alloys. Comput. Mater. Sci. 2018, 155, 378–382. [Google Scholar] [CrossRef]
- Trojanová, Z.; Drozd, D.; Halmešová, K.; Džugan, J.; Škraban, T.; Minárik, P.; Németh, G.; Lukáč, P. Strain Hardening in an AZ31 Alloy Submitted to Rotary Swaging. Materials 2021, 14, 157. [Google Scholar] [CrossRef]
- Balík, J.; Dobroň, P.; Chmelík, F.; Kužel, R.; Drozdenko, D.; Bohlen, J.; Letzig, D.; Lukáč, P. Modeling of the Work Hardening in Magnesium Alloy Sheets. Int. J. Plast. 2016, 76, 166–185. [Google Scholar] [CrossRef]
- Máthis, K.; Trojanová, Z.; Lukáč, P. Hardening and Softening in Deformed Magnesium Alloys. Mater. Sci. Eng. A 2002, 324, 141–144. [Google Scholar] [CrossRef]
- Slater, J.C. Atomic Radii in Crystals. J. Chem. Phys. 1964, 41, 3199–3204. [Google Scholar] [CrossRef]
- Robson, J.D.; Stanford, N.; Barnett, M.R. Effect of Precipitate Shape on Slip and Twinning in Magnesium Alloys. Acta Mater. 2011, 59, 1945–1956. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Wang, J.; Wang, L.; Zeng, X.; Jin, Z. Cluster Hardening Effects on Twinning in Mg-Zn-Ca Alloys. Metals 2022, 12, 693. https://doi.org/10.3390/met12040693
Liu R, Wang J, Wang L, Zeng X, Jin Z. Cluster Hardening Effects on Twinning in Mg-Zn-Ca Alloys. Metals. 2022; 12(4):693. https://doi.org/10.3390/met12040693
Chicago/Turabian StyleLiu, Ruixue, Jie Wang, Leyun Wang, Xiaoqin Zeng, and Zhaohui Jin. 2022. "Cluster Hardening Effects on Twinning in Mg-Zn-Ca Alloys" Metals 12, no. 4: 693. https://doi.org/10.3390/met12040693
APA StyleLiu, R., Wang, J., Wang, L., Zeng, X., & Jin, Z. (2022). Cluster Hardening Effects on Twinning in Mg-Zn-Ca Alloys. Metals, 12(4), 693. https://doi.org/10.3390/met12040693