A Strategic Design Route to Find a Depleted Uranium High-Entropy Alloy with Great Strength
Abstract
:1. Introduction
2. Design Idea and Experimental Route for DUHEAs
2.1. Design Idea
2.2. Test Method
3. Design Process and Experimental Results
3.1. Ternary U-Nb-Zr Medium-Entropy Alloy (MEA)
3.2. Quaternary U-Nb-Zr-X HEA
3.3. Quinary U-Nb-Zr-Ti-Mo HEAs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Li, D.Y.; Li, C.X.; Feng, T.; Zhang, Y.D.; Sha, G.; Lewandowski, J.J.; Liaw, P.K. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 2017, 123, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Moravcikova-Gouvea, L.; Moravcik, I.; Omasta, M.; Veselý, J.; Cizek, J.; Minárik, P.; Cupera, J.; Záděra, A.; Jan, V.; Dlouhy, I. High-strength Al0.2Co1.5CrFeNi1.5Ti high-entropy alloy produced by powder metallurgy and casting: A comparison of microstructures, mechanical and tribological properties. Mater. Charact. 2020, 159, 110046. [Google Scholar] [CrossRef]
- Zhang, W.; Liaw, K.P.; Zhang, Y. A Novel Low-Activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) High-Entropy Alloys with Excellent Heat-Softening Resistance. Entropy 2018, 20, 951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, D.J.M.; Cheung, S.T.Y.; Humphry-Baker, S.A.; Parkin, C.; Couet, A.; Cortie, M.B.; Lumpkin, G.R.; Middleburgh, S.C.; Knowles, A.J. High temperature, low neutron cross-section high-entropy alloys in the Nb-Ti-V-Zr system. Acta Mater. 2019, 166, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Sheikh, S.; Ou, P.; Chen, D.; Hu, Q.; Guo, S. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions. Electrochem. Commun. 2019, 98, 63–68. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liaw, P.K.; Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater. 2018, 61, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Wakeford, R. Depleted uranium. J. Radiol. Prot. Off. J. Soc. Radiol. Prot. 2001, 21, 76. [Google Scholar] [CrossRef]
- Jiang, G.C.; Aschner, M. Depleted Uranium. Handbook of Toxicology of Chemical Warfare Agents; Elsevier: Amsterdam, The Netherlands, 2015; pp. 447–460. [Google Scholar]
- Wang, B.; Dong, Y.; Huang, G. An investigation on the adiabatic shear bands in depleted U-0.75 wt% Ti alloy under dynamic loading. Metals 2018, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, R.I.; Peterson, D.E. The U-Zr (Uranium-Zirconium) system. Bull. Alloy. Phase Diagr. 1989, 10, 165–171. [Google Scholar] [CrossRef]
- Bian, B.; Zhou, P.; Wen, S.; Du, Y. Atomic mobilities and diffusivities in U-X (X = Nb, Zr, Ti) bcc alloys. Calphad 2018, 61, 85–91. [Google Scholar] [CrossRef]
- Sinha, V.; Hegde, P.; Prasad, G.; Dey, G.; Kamath, H. Phase transformation of metastable cubic γ-phase in U–Mo alloys. J. Alloys Compd. 2010, 506, 253–262. [Google Scholar] [CrossRef]
- Liu, X.J.; Li, Z.S.; Wang, J.; Wang, C.P. Thermodynamic modeling of the U–Mn and U–Nb systems. J. Nucl. Mater. 2008, 380, 99–104. [Google Scholar] [CrossRef]
- Morais, N.W.S.; Lopes, D.A.; Schön, C.G. Effect of thermo-mechanical processing on microstructure and mechanical properties of U-Nb-Zr alloys: Part 1—U–6 wt. % Nb –6 wt. % Zr. J. Nucl. Mater. 2017, 488, 173–180. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.W.; Jiang, C.L.; Wang, X.; Zhang, Y.Z.; Zou, D.L.; Xu, H.Y.; Huang, H.; Luo, C. Development of single-phase bcc UHfNbTi high-entropy alloy with excellent mechanical properties. Mater. Lett. 2022, 307, 130822. [Google Scholar] [CrossRef]
- Koike, J.; Kassner, M.E.; Tate, R.E.; Rosen, R.S. The Nb-U (Niobium-Uranium) System. J. Phase Equilib. 1998, 19, 253–260. [Google Scholar] [CrossRef]
- Gao, M.C.; Zhang, B.; Yang, S.; Guo, S.M. Senary Refractory High-Entropy Alloy HfNbTaTiVZr. Metall Mater. Trans. A 2016, 47, 3333–3345. [Google Scholar] [CrossRef]
- Chen, H.L.; Mao, H.H.; Chen, Q. Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips. Mater. Chem. Phys. 2017, 210, 279–290. [Google Scholar] [CrossRef]
- Jiang, C.; Uberuaga, B.P. Efficient ab initio modeling of random multicomponent alloys. Phys. Rev. Lett. 2016, 116, 105501. [Google Scholar] [CrossRef] [Green Version]
- Mu, S.; Wimmer, S.; Mankovsky, S.; Ebert, H.; Stocks, G.M. Influence of local lattice distortions on electrical transport of refractory high entropy alloys. Scr. Mater. 2019, 170, 189–194. [Google Scholar] [CrossRef]
- Gao, M.C.; Gao, P.; Hawk, J.A.; Ouyang, L.; Alman, D.E.; Widom, M. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 2017, 32, 3627–3641. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y. A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties. Scr. Mater. 2020, 178, 329–333. [Google Scholar] [CrossRef]
- Mathiou, C.; Poulia, A.; Georgatis, E.; Karantzalis, A.E. Microstructural features and dry—Sliding wear response of MoTaNbZrTi high entropy alloy. Mater. Chem. Phys. 2018, 210, 126–135. [Google Scholar] [CrossRef]
- Shi, J.; Huang, H.; Hu, G.; Zhang, P.; Jiang, C.; Xu, H.; Luo, C. Microstructure and mechanical properties of two uranium-containing high-entropy alloys. J. Alloys Compd. 2020, 860, 158295. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Gao, M.C.; Yeh, J.W.; Liaw, P.K.; Zhang, Y. High-Entropy Alloys: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Lu, J.; Liu, C. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.-H.; Ma, J.; Zhang, Y. High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering. Sci. China Phys. Mech. Astron. 2019, 62, 996111. [Google Scholar] [CrossRef]
- Tan, X.-R.; Zhang, G.-P.; Zhi, Q.; Liu, Z.-X. Effects of milling on the microstructure and hardness of Al2NbTi3V2Zr high-entropy alloy. Mater. Design 2016, 109, 27–36. [Google Scholar] [CrossRef]
Allotrope | α-U | β-U | γ-U |
---|---|---|---|
Temperature (°C) | <667.7 | 667.7~774.8 | 774.8~1132.3 |
Crystal structure | |||
Density (g/cm3) | 19.05 | 18.13 | 17.91 |
Element | U238 | Nb | Zr | Ti | Mo |
---|---|---|---|---|---|
Atomic number | 92 | 41 | 40 | 22 | 42 |
Atomic radius (pm) | 139 | 143 | 159 | 146 | 141 |
Density (g/cm3) | 19.05 | 8.52 | 6.49 | 4.51 | 10.20 |
Melting point (K) | 1405 | 2750 | 2128 | 1941 | 2896 |
Electronegativity | 1.38 | 1.60 | 1.33 | 1.54 | 2.16 |
Lattice content (pm) | 343.3 | 330.1 | 360.9 | 327.6 | 314.7 |
Valence electron concentration (VEC) | 3 | 5 | 4 | 4 | 6 |
U | Nb | Zr | Ti | Mo | |
---|---|---|---|---|---|
U | - | 4 | −3 | 0 | 2 |
Nb | - | - | 4 | 2 | −6 |
Zr | - | - | - | 0 | −6 |
Ti | - | - | - | - | −4 |
Mo | - | - | - | - | - |
Alloys | δ (%) | ΔHmix (KJ/mol) | ΔSmix (KJ/mol) | Tm (K) | Ω | VEC |
---|---|---|---|---|---|---|
UNbZr | 5.88 | 2.22 | 9.13 | 2094 | 8.6 | 4.00 |
UNb0.5Zr | 6.26 | 0.64 | 8.77 | 1963 | 26.9 | 3.80 |
UNbZr0.5 | 5.13 | 2.88 | 8.77 | 2087 | 6.4 | 4.00 |
UNb0.5Zr0.5 | 5.69 | 1.50 | 8.64 | 1922 | 11.1 | 3.75 |
UNb1.5Zr | 5.55 | 2.94 | 8.97 | 2188 | 6.7 | 4.14 |
UNbZr1.5 | 6.08 | 1.80 | 8.97 | 2099 | 10.5 | 4.00 |
Properties | UNb0.5Zr0.5 | UNb0.5Zr | UNbZr0.5 | UNbZr | UNb1.5Zr | UNbZr1.5 |
---|---|---|---|---|---|---|
Hardness (HB) | 246 | 263 | 211 | 235 | 243 | 238 |
Strength (MPa) | 793 | 883 | 748 | 863 | 858 | 755 |
Alloys | δ (%) | ΔHmix (KJ/mol) | ΔSmix (KJ/mol) | Tm (K) | Ω | VEC |
---|---|---|---|---|---|---|
UNb0.5Zr0.5Ti0.2 | 5.42 | 1.40 | 10.39 | 1924 | 14.3 | 3.77 |
UNb0.5Zr0.5Ti0.5 | 5.09 | 1.28 | 11.07 | 1926 | 16.7 | 3.80 |
UNb0.5Zr0.5Ti | 4.64 | 1.11 | 11.05 | 1928 | 19.2 | 3.83 |
UNb0.5Zr0.5Mo0.2 | 5.49 | 0.58 | 10.39 | 2011 | 36.1 | 3.95 |
UNb0.5Zr0.5Mo0.5 | 5.23 | −0.32 | 11.07 | 2117 | 73.3 | 4.20 |
UNb0.5Zr0.5Mo | 4.87 | −1.11 | 11.05 | 2247 | 22.4 | 4.50 |
Properties | UNb0.5Zr0.5Ti0.2 | UNb0.5Zr0.5Ti0.5 | UNb0.5Zr0.5Ti | UNb0.5Zr0.5Mo0.2 | UNb0.5Zr0.5Mo0.5 | UNb0.5Zr0.5Mo |
---|---|---|---|---|---|---|
Hardness (HB) | 233 | 220 | 214 | 289 | 305 | 367 |
Strength (MPa) | 760 | 881 | 754 | / | 1452 | 1668.9 (Crashed) |
Alloys | δ (%) | ΔHmix (KJ/mol) | ΔSmix (KJ/mol) | Tm (K) | Ω | VEC |
---|---|---|---|---|---|---|
UNb0.5Zr0.5Ti0.2Mo0.2 | 5.26 | 0.51 | 11.91 | 2005 | 46.46 | 3.96 |
UNb0.5Zr0.5Ti0.5Mo0.5 | 4.79 | −0.44 | 12.98 | 2088 | 60.94 | 4.17 |
Properties | UNb0.5Zr0.5Ti0.2Mo0.2 | UNb0.5Zr0.5Ti0.5Mo0.5 |
---|---|---|
Hardness (HB) | 297 | 350 |
Strength (MPa) | 1157 | 1215 (Crashed) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, Y.; Liaw, P.K.; Zhang, Y. A Strategic Design Route to Find a Depleted Uranium High-Entropy Alloy with Great Strength. Metals 2022, 12, 699. https://doi.org/10.3390/met12040699
Zhang W, Li Y, Liaw PK, Zhang Y. A Strategic Design Route to Find a Depleted Uranium High-Entropy Alloy with Great Strength. Metals. 2022; 12(4):699. https://doi.org/10.3390/met12040699
Chicago/Turabian StyleZhang, Weiran, Yasong Li, Peter K. Liaw, and Yong Zhang. 2022. "A Strategic Design Route to Find a Depleted Uranium High-Entropy Alloy with Great Strength" Metals 12, no. 4: 699. https://doi.org/10.3390/met12040699
APA StyleZhang, W., Li, Y., Liaw, P. K., & Zhang, Y. (2022). A Strategic Design Route to Find a Depleted Uranium High-Entropy Alloy with Great Strength. Metals, 12(4), 699. https://doi.org/10.3390/met12040699