In Vitro Bio-Testing Comparative Analysis of NiTi Porous Alloys Modified by Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Structural Investigations
2.2.2. Determination of Ni Content in Solution
2.2.3. In Vitro Bio-Testing
2.2.4. Hemolysis Test
2.2.5. Cytotoxicity Test
3. Results and Discussion
3.1. XRD Analysis of the NiTi Surfaces
3.2. SEM and EDS Investigations of the NiTi Surfaces
3.3. Ni Content in Solution and Hemolysis Test
3.4. Cytotoxicity Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, B.; Wu, F.; Alajmi, Z.; Zhang, C.; Fu, T.; Ge, Y. Sol–gel derived Ta-containing TiO2 films on surface roughened NiTi alloy. Rare Met. 2014, 33, 21–27. [Google Scholar] [CrossRef]
- Tao, F.; Hongwei, L.; Feng, W.; Wen, L.; Jianmin, S. One-Step Synthesis of TiO2-Hydroxyapatite Nano-films on NiTi Alloy by Hydrothermal Method. Rare Met. Mater. Eng. 2016, 45, 1128–1131. [Google Scholar] [CrossRef] [Green Version]
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Jiang, Y.; Zhou, R. Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. J. Alloys Compd. 2015, 644, 513–522. [Google Scholar] [CrossRef]
- Gunther, V.E.; Yasenchuk, Y.; Gyunter, S.V.; Marchenko, E.S.; Iuzhakov, M.M. Biocompatibility of porous SHS-TiNi. Mater. Sci. Forum 2019, 970, 320–327. [Google Scholar] [CrossRef]
- Dotter, C.T.; Buschmann, P.C.; McKinney, M.K.; Rosch, J. Transluminal expandable nitinol coil stent grafting: Preliminary report. Radiology 1983, 147, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Stoeckel, D. Nitinol medical devices and implants. Minim. Invasive Ther. Allied Technol. 2000, 9, 81–88. [Google Scholar] [CrossRef]
- Duerig, T.W.; Tolomeo, D.E.; Wholey, M. An overview of superelastic stent design. Minim. Invasive Ther. Allied Technol. 2000, 9, 235–246. [Google Scholar] [CrossRef]
- Čapek, J.; Vojtěch, D. Powder metallurgical techniques for preparation of biomaterials. Manuf. Technol. 2015, 15, 964–969. [Google Scholar] [CrossRef]
- Mediaswanti, K.; Wen, C.; Ivanova, E.; Berndt, C.; Malherbe, F.; Pham, V.; Wang, J. A Review on Bioactive Porous Metallic Biomaterials. J. Biomim. Biomater. Tissue Eng. 2013, 18, 2–8. [Google Scholar] [CrossRef]
- Hu, T.; Chu, C.; Xin, Y.; Wu, S.; Yeung, K.; Chu, P. Corrosion products and mechanism on NiTi shape memory alloy in physiological environment. J. Mater. Res. 2010, 25, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, E.S.; Yasenchuk, Y.; Gyunter, S.V.; Bajgonakova, G.A.; Gunther, V.E.; Chekalkin, T.L.; Weiss, S.; Obrosov, A.; Dubovikov, K.M. Structural-phase surface composition of porous NiTi produced by SHS. Mater. Res. Express. 2019, 6, 1165–1175. [Google Scholar] [CrossRef]
- Yasenchuk, Y.F.; Gunther, V.E.; Marchenko, E.S.; Chekalkin, T.L.; Bajgonakova, G.A.; Khodorenko, V.N.; Gyunter, S.V.; Kang, J.H.; Weiss, S.; Obrosov, A. Formation of mineral phases in self-propagating high-temperature synthesis (SHS) of porous NiTi alloy. Mater. Res. Express. 2019, 6, 056522. [Google Scholar] [CrossRef]
- Kokorev, O.V.; Khodorenko, V.N.; Baigonakova, G.A.; Marchenko, E.S.; Yasenchuk, Y.; Gunther, V.E.; Anikeev, S.G.; Barashkova, G.A. Metal-Glass-Ceramic Phases on the Surface of Porous NiTi-Based SHS-Material for Carriers of Cells. Russ. Phys. J. 2019, 61, 1734–1738. [Google Scholar] [CrossRef]
- Lou, J.; He, H.; Li, Y.; Zhu, C.; Chen, Z.; Liu, C. Effects of high O contents on the microstructure, phase-transformation behaviour, and shape-recovery properties of porous NiTi-based shape-memory alloys. Mater. Des. 2016, 106, 37–44. [Google Scholar] [CrossRef]
- Yasenchuk, Y.; Marchenko, E.; Gunther, V.; Radkevich, A.; Kokorev, O.; Gunther, S.; Baigonakova, G.; Hodorenko, V.; Chekalkin, T.; Kang, J.; et al. Biocompatibility and Clinical Application of Porous TiNi Alloys Made by Self-Propagating High-Temperature Synthesis (SHS). Materials 2019, 12, 2405. [Google Scholar] [CrossRef] [Green Version]
- Petruk, P.S.; Medvedev, Y.A.; Show, Y.Z.; Volkova, V.A. Nickel-Titanium Shape Memory Alloy in Reconstructive Osteosynthesis in Patients with Zygomatico-Orbital Complex Fractures. SMBIM Conference Proceedings Shape Memory Biomaterials and Implants in Medicine. KnE Mater. Sci. 2017, 2017, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Radkevich, A.A.; Gantimurov, A.A.; Gunther, V.E.; Platonova, N.V. Replacement of Temporomandibular Joint Head Using the Shape Memory Materials. SMBIM Conference Proceedings Shape Memory Biomaterials and Implants in Medicine. KnE Mater. Sci. 2017, 2017, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Medvedev, Y.A.; Basin, E.M.; Milyukova, D.Y. Mandibular TiNi-based Endograft in Patients with Toxic Jaw Osteonecrosis and Drug Abuse. SMBIM Conference Proceedings Shape Memory Biomaterials and Implants in Medicine. KnE Mater. Sci. 2017, 2017, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.I.; Saad, A.P.M.; Syahrom, A.; Uddin, M.; van der Heide, E.; Basri, H. The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty. J. Funct. Biomater. 2021, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.X.; Grosdidier, T.; Zhang, K.M.; Dong, C.; Weber, S. Mechanism of surface modifications on a NiTi alloy treated with low energy high current pulsed electron beam. EPJ Appl. Phys. 2008, 43, 327–331. [Google Scholar] [CrossRef]
- Ponsonnet, L.; Reybier, K.; Jaffrezic, N.; Comte, V.; Lagneau, C.; Lissac, M.; Martelet, C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behavior. Mater. Sci. Eng. C 2003, 23, 551–560. [Google Scholar] [CrossRef]
- Hansen, A.W.; Beltrami, L.V.R.; Antonini, L.M.; Villarinho, D.J.; das Neves, J.C.K.; Marino, C.E.B.; Malfatti, C.F. Oxide Formation on NiTi Surface: Influence of the heat Treatment Time to Achieve the Shape Memory. Mater. Res. 2015, 18, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Ferraris, S.; Cazzola, M.; Peretti, V.; Stella, B.; Spriano, S. Zeta potential measurements on solid surfaces for in vitro biomaterials testing: Surface 18 charge, reactivity upon contact with fluids and protein absorption. Front. Bioeng. Biotechnol. 2018, 6, 60–67. [Google Scholar] [CrossRef]
- Mahmud, A.; Wu, Z.; Zhang, J.; Liu, Y.; Yang, H. Surface oxidation of NiTi and its effects on thermal and mechanical properties. Intermetallics 2018, 103, 52–62. [Google Scholar] [CrossRef]
- Gu, Y.W.; Tay, B.Y.; Lim, C.S.; Yong, M.S. Characterization of bioactive surface oxidation layer on NiTi alloy. Appl. Surf. Sci. 2005, 252, 2038–2049. [Google Scholar] [CrossRef]
- Chu, C.L.; Wu, S.K.; Yen, Y.C. Oxidation behavior of equiatomic NiTi alloy in high temperature air environment. Mater. Sci. Eng. A 1996, 216, 193–200. [Google Scholar] [CrossRef]
- Dagdelen, F.; Ercan, E. The surface oxidation behavior of Ni–45.16%Ti shape memory alloys at different temperatures. J. Therm. Anal. Calorim. 2014, 115, 561–565. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Yang, D.; Qi, M. The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent. Mater. Charact. 2008, 59, 402–406. [Google Scholar] [CrossRef]
- Shabalovskaya, S.; Anderegg, J.; Humbeeck, J. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008, 4, 447–467. [Google Scholar] [CrossRef] [PubMed]
- Firstov, G.S.; Vitchev, R.G.; Kumar, H.; Blanpain, B.; Van Humbeeck, J. Surface oxidation of NiTi shape memory alloy. Biomaterials 2002, 23, 4863–4871. [Google Scholar] [CrossRef]
- Tian, H.; Schryvers, D.; Liu, D.; Jiang, Q.; Van Humbeeck, J. Stability of Ni in nitinol oxide surfaces. Acta Biomater. 2011, 7, 892–899. [Google Scholar] [CrossRef]
- Undisz, A.; Schrempel, F.; Wesch, W.; Rettenmayr, M. Mechanism of oxide layer growth during annealing of NiTi. J. Biomed. Mater. Res. A 2012, 100, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Dong, P.; Hao, W.; Wang, T.; Xia, Y.; Da, G.; Fan, Y. Biocompatibility of TiO2 and TiO2/heparin coatings on NiTi alloy. Appl. Surf. Sci. 2014, 313, 172–182. [Google Scholar] [CrossRef]
- Gunther, V.; Yasenchuk, Y.; Chekalkin, T.; Marchenko, E.; Gunther, S.; Baigonakova, G.; Hodorenko, V.; Kang, J.H.; Weiss, S.; Obrosov, A. Formation of pores and amorphous nanocrystalline phases in porous NiTi alloys made by self-propagating high-temperature synthesis (SHS). Adv. Powder Technol. 2019, 30, 673–680. [Google Scholar] [CrossRef]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Weng, C.; Chen, C.; Ting, C.; Wei, K. Using a solution crystal growth method to grow arrays of aligned, individually distinct, single-crystalline TiO2 nanoneedles within nanocavities. Chem. Mater. 2005, 17, 3328–3330. [Google Scholar] [CrossRef]
- Blanco-Dalmau, L.; Carrasquillo-Alberty, D.; Silva-Parra, J. A study of nickel allergy. J. Prosthet. Dent. 1984, 52, 116–119. [Google Scholar] [CrossRef]
- Shabolovskaya, S.A. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Biomed. Mater. Eng. 2002, 12, 69–109. [Google Scholar]
Database | NiTi (B2) | Ti2Ni | Ni3Ti | TiO | TiO2 | Ni |
---|---|---|---|---|---|---|
COD ID | mp-23 | 1527848 | 1010452 | 1100042 | 1530150 tetragonal | 1512526 |
Materials Project ID | mp-571 | mp-1808 | mp-1409 | mp-2664 | mp-2657 tetragonal; mp-554278 monoclinic | mp-23 |
NiTi (B2) | Ti2Ni | Ni3Ti | TiO | TiO2 | Ni | |
---|---|---|---|---|---|---|
2θ standard | 42.721 62.009 78.23 | 39.141 41.622 45.509 | 42.382 43.556 46.603 | 42.134 61.108 77.012 | Tetragonal 27.1 35.877 53.793 55.886 Monoclinic 27.466 | 44.776 52.182 |
Miller indices | (110) (200) (211) | (422) (511) (440) | (201) (0004) (202) | (200) (220) (222) | Tetragonal (110) (101) (211) (220) Monoclinic (11) | (111) (200) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchenko, E.; Baigonakova, G.; Dubovikov, K.; Kokorev, O.; Yasenchuk, Y.; Vorozhtsov, A. In Vitro Bio-Testing Comparative Analysis of NiTi Porous Alloys Modified by Heat Treatment. Metals 2022, 12, 1006. https://doi.org/10.3390/met12061006
Marchenko E, Baigonakova G, Dubovikov K, Kokorev O, Yasenchuk Y, Vorozhtsov A. In Vitro Bio-Testing Comparative Analysis of NiTi Porous Alloys Modified by Heat Treatment. Metals. 2022; 12(6):1006. https://doi.org/10.3390/met12061006
Chicago/Turabian StyleMarchenko, Ekaterina, Gulsharat Baigonakova, Kirill Dubovikov, Oleg Kokorev, Yuri Yasenchuk, and Alexander Vorozhtsov. 2022. "In Vitro Bio-Testing Comparative Analysis of NiTi Porous Alloys Modified by Heat Treatment" Metals 12, no. 6: 1006. https://doi.org/10.3390/met12061006
APA StyleMarchenko, E., Baigonakova, G., Dubovikov, K., Kokorev, O., Yasenchuk, Y., & Vorozhtsov, A. (2022). In Vitro Bio-Testing Comparative Analysis of NiTi Porous Alloys Modified by Heat Treatment. Metals, 12(6), 1006. https://doi.org/10.3390/met12061006