Analysis of Fatigue Strength of L-PBF AlSi10Mg with Different Surface Post-Processes: Effect of Residual Stresses
Abstract
:1. Introduction
Scope of the Work and Paper Structure
2. Materials and Methods
2.1. Fatigue Tests
2.2. Strain Control Fatigue Cyclic Tests
2.3. Residual Stress Measurements
2.4. Fracture Analysis
3. Results
3.1. S-N Curves
3.2. Analysis of Fracture Surfaces
3.3. Residual Stresses Measurements
3.4. Defect Distributions and Statistics of Extremes
3.5. Cyclic Plasticity Material Model
4. Stability of the Residual Stress Profile under Fatigue Loads
4.1. Residual Stresses Approximation
4.2. Numerical Analyses
- all the lower nodes lying on the x-axis were imposed to have a null displacement along the y direction, in order to be compliant with the specimen’s symmetry;
- a concentrated force was applied on a reference point which is kinematically coupled to the top nodes of the model;
- all the rotations and the displacement along the x direction of the reference point were imposed to be zero.
5. Fatigue Model
- 1.
- the manufacturing defects, namely internal or superficial;
- 2.
- the presence of residual stresses, mainly compressive and tensile for machined and net-shape specimens respectively, and a mix of compressive and tensile for the sandblasted ones.
5.1. Fatigue Strength
5.2. Finite Life Prediction
- absence of residual stresses, which corresponds to the condition ;
- presence of residual stresses considering the nominal profiles fitted in Section 4.1;
- presence of residual stresses by using the values coming from the FE relaxation analyses, discussed in Section 4.2. A linear interpolation of the profiles was adopted for the values of stress range outside the ones used in the FE simulations and reported in Table 6.
6. Conclusions
- 1.
- the different superficial states, namely machined, net-shape and sandblasted, considered in this work are characterized by significant differences in fatigue strength;
- 2.
- each specimen’s series had a residual stress profile, due to manufacturing cycle, that strongly influences the fatigue behaviour;
- 3.
- a cyclic fatigue loading, even if it guarantees a global elastic behaviour of the specimens, can modify the residual stress profile. This phenomenon was investigated with a series of numerical elasto-plastic simulations;
- 4.
- accurate fatigue performances estimations were obtained by considering the real residual stresses profile from the numerical simulations of the three specimen’s series and crack propagation models including short-crack and R-ratio effects;
- 5.
- the developed methodology to investigate the prospective relaxation of residual stress profiles of the fatigue specimens printed out of AlSi10Mg material seems to be promising for estimating the fatigue performances of AMed parts and components.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature and Abbreviations
Nomenclature | |
a | Crack size |
A, B | Parameters of the S-N curves |
k-th back stress of the Chaboche cyclic plasticity model | |
c | Semi-superficial crack length |
C, n, p | Best fitted parameters of the NASGRO crack growth curve |
, | k-th Chaboche cyclic plasticity model’s parameter |
Applied stress range | |
Fatigue stress range limit | |
SIF range | |
SIF range threshold | |
Stabilized cyclic Young’s modulus | |
Alternate total strain | |
, | Elastic and plastic alternate strains respectively |
Newman’s crack opening function | |
, | Hardening coefficient and exponent of the Ramberg-Osgood cyclic curve |
, | Maximum and minimum SIFs respectively reached during a fatigue cycle |
SIF due to the residual stress field | |
Number of cycles to failure | |
Effective stress ratio due to the residual stress field | |
Strain ratio | |
Global load ratio | |
Alternate stress | |
Tangential residual stress | |
Axial residual stress | |
t | Depth of the superficial feature |
w | Total length of the superficial feature |
Y | Murakami’s boundary correction factor |
Abbreviations | |
AM | Additive manufacturing |
AMed | Additive manufactured |
AR | Crack aspect ratio |
AST | American Stress Technology |
ASTM | American Society for Testing Materials |
FCG | Fatigue crack growth |
FE | Finite element |
HCF | High cycle fatigue |
L-PBF | Laser powder bed fusion |
LEVD | Largest extreme value distribution |
SEM | Scanning electron microscope/microscopy |
SIF | Stress intensity factor |
SLM | Selective laser melting |
S-N | Stress range over the number of cycles to failure curve |
SPP | Spherical powder particles |
XRD | X-ray diffraction measurements method |
Appendix A. XRD Measurements of Residual Stresses
Position | Depth [µm] | Stress [MPa] | Deviation [MPa] | FWHM [°] | Deviation [°] | Stress [MPa] | Deviation [MPa] | FWHM [°] | Deviation [°] |
Specimen SAB-1 | |||||||||
A | 0.0 | −69.0 | 4.5 | 0.74 | 0.12 | −66.4 | 4.3 | 1.68 | 0.08 |
A | 44.3 | −67.4 | 7.2 | 1.57 | 0.08 | −54.2 | 3.2 | 1.57 | 0.10 |
A | 105.2 | −103.1 | 15.0 | 1.50 | 0.08 | −87.5 | 12.3 | 1.47 | 0.11 |
A | 192.9 | −134.3 | 23.6 | 1.45 | 0.08 | −95.5 | 12.3 | 1.41 | 0.09 |
A | 303.6 | −21.4 | 8.1 | 1.42 | 0.13 | −40.2 | 11.0 | 1.40 | 0.19 |
A | 400.6 | 71.9 | 7.9 | 1.44 | 0.11 | 55.3 | 6.8 | 1.53 | 0.23 |
B | 0.0 | −71.3 | 4.5 | 1.74 | 0.10 | −70.0 | 4.2 | 1.69 | 0.07 |
B | 56.0 | −73.9 | 8.6 | 1.56 | 0.08 | −79.6 | 5.9 | 1.53 | 0.08 |
B | 109.6 | −93.9 | 15.9 | 1.50 | 0.11 | −114.6 | 9.6 | 1.41 | 0.06 |
B | 202.6 | −92.2 | 12.1 | 1.42 | 0.12 | −125.8 | 10.2 | 1.32 | 0.08 |
B | 304.0 | 18.3 | 13.0 | 1.44 | 0.14 | −6.2 | 10.6 | 1.40 | 0.12 |
B | 403.2 | 129.2 | 5.2 | 1.43 | 0.11 | 55.7 | 8.7 | 1.50 | 0.17 |
Specimen SAB-32 | |||||||||
A | 0.0 | −70.0 | 2.4 | 1.62 | 0.10 | −65.7 | 3.9 | 1.57 | 0.08 |
A | 44.0 | −77.3 | 13.3 | 1.41 | 0.13 | −69.1 | 4.9 | 1.49 | 0.06 |
A | 104.0 | −119.1 | 9.5 | 1.34 | 0.14 | −107.7 | 8.8 | 1.38 | 0.08 |
A | 155.0 | −105.8 | 17.2 | 1.35 | 0.07 | −103.1 | 8.9 | 1.31 | 0.07 |
A | 207.0 | −77.2 | 14.9 | 1.35 | 0.10 | −81.9 | 8.7 | 1.31 | 0.06 |
A | 311.0 | 52.4 | 7.3 | 1.35 | 0.13 | 1.4 | 9.2 | 1.35 | 0.13 |
A | 410.0 | 78.2 | 11.8 | 1.37 | 0.13 | 40.2 | 8.8 | 1.39 | 0.18 |
B | 0.0 | −71.2 | 2.6 | 1.65 | 0.10 | −73.5 | 3.0 | 1.60 | 0.08 |
B | 54.0 | −92.8 | 7.3 | 1.47 | 0.06 | −92.7 | 3.1 | 1.46 | 0.06 |
B | 99.0 | −103.8 | 14.3 | 1.44 | 0.09 | −103.6 | 6.8 | 1.38 | 0.06 |
B | 152.0 | −75.8 | 14.8 | 1.38 | 0.11 | −91.2 | 10.1 | 1.32 | 0.08 |
B | 198.0 | −22.1 | 10.5 | 1.36 | 0.11 | −95.0 | 11.1 | 1.31 | 0.06 |
B | 307.0 | 61.2 | 8.9 | 1.37 | 0.12 | 24.7 | 7.0 | 1.36 | 0.12 |
B | 412.0 | 117.2 | 5.4 | 1.39 | 0.12 | 45.4 | 8.5 | 1.43 | 0.17 |
References
- Gardan, J. Additive manufacturing technologies: State of the art and trends. Int. J. Prod. Res. 2016, 54, 3118–3132. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Bose, S. Additive Manufacturing; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Tuck, C.; Hague, R.; Burns, N. Rapid manufacturing: Impact on supply chain methodologies and practice. Int. J. Serv. Oper. Manag. 2007, 3, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Yadollahi, A.; Shamsaei, N. Additive manufacturing of fatigue resistant materials: Challenges and opportunities. Int. J. Fatigue 2017, 98, 14–31. [Google Scholar] [CrossRef] [Green Version]
- Siddique, S.; Imran, M.; Rauer, M.; Kaloudis, M.; Wycisk, E.; Emmelmann, C.; Walther, F. Computed tomography for characterization of fatigue performance of selective laser melted parts. Mater. Des. 2015, 83, 661–669. [Google Scholar] [CrossRef]
- Siddique, S.; Awd, M.; Tenkamp, J.; Walther, F. Development of a stochastic approach for fatigue life prediction of AlSi12 alloy processed by selective laser melting. Eng. Fail. Anal. 2017, 79, 34–50. [Google Scholar] [CrossRef]
- Romano, S.; Brückner-Foit, A.; Brandão, A.; Gumpinger, J.; Ghidini, T.; Beretta, S. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength. Eng. Fract. Mech. 2018, 187, 165–189. [Google Scholar] [CrossRef]
- Beretta, S.; Romano, S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int. J. Fatigue 2017, 94, 178–191. [Google Scholar] [CrossRef]
- Beretta, S.; Gargourimotlagh, M.; Foletti, S.; Du Plessis, A.; Riccio, M. Fatigue strength assessment of “as built” AlSi10Mg manufactured by SLM with different build orientations. Int. J. Fatigue 2020, 139, 105737. [Google Scholar] [CrossRef]
- Du Plessis, A.; Beretta, S. Killer notches: The effect of as-built surface roughness on fatigue failure in AlSi10Mg produced by laser powder bed fusion. Addit. Manuf. 2020, 35, 101424. [Google Scholar] [CrossRef]
- Molaei, R.; Fatemi, A.; Sanaei, N.; Pegues, J.; Shamsaei, N.; Shao, S.; Li, P.; Warner, D.; Phan, N. Fatigue of additive manufactured Ti-6Al-4V, Part II: The relationship between microstructure, material cyclic properties, and component performance. Int. J. Fatigue 2020, 132, 105363. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A. Defect-based fatigue life prediction of L-PBF additive manufactured metals. Eng. Fract. Mech. 2021, 244, 107541. [Google Scholar] [CrossRef]
- Beretta, S.; Patriarca, L.; Gargourimotlagh, M.; Hardaker, A.; Brackett, D.; Salimian, M.; Gumpinger, J.; Ghidini, T. A benchmark activity on the fatigue life assessment of AlSi10Mg components manufactured by L-PBF. Mater. Des. 2021, 218, 110713. [Google Scholar] [CrossRef]
- Tenkamp, J.; Koch, A.; Knorre, S.; Krupp, U.; Michels, W.; Walther, F. Defect-correlated fatigue assessment of A356-T6 aluminum cast alloy using computed tomography based Kitagawa-Takahashi diagrams. Int. J. Fatigue 2018, 108, 25–34. [Google Scholar] [CrossRef]
- Tenkamp, J.; Awd, M.; Siddique, S.; Starke, P.; Walther, F. Fracture-mechanical assessment of the effect of defects on the fatigue lifetime and limit in cast and additively manufactured aluminum-silicon alloys from HCF to VHCF regime. Metals 2020, 10, 943. [Google Scholar] [CrossRef]
- Murakami, Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- El Haddad, M.; Topper, T.; Smith, K. Prediction of non propagating cracks. Eng. Fract. Mech. 1979, 11, 573–584. [Google Scholar] [CrossRef]
- Sausto, F.; Carrion, P.; Shamsaei, N.; Beretta, S. Fatigue failure mechanisms for AlSi10Mg manufactured by L-PBF under axial and torsional loads: The role of defects and residual stresses. Int. J. Fatigue 2022, 162, 106903. [Google Scholar] [CrossRef]
- Gumpinger, J.; Brandão, A.D.; Beevers, E.; Rohr, T.; Ghidini, T.; Beretta, S.; Romano, S. Expression of Additive Manufacturing Surface Irregularities through a Flaw-Based Assessment; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Edwards, P.; Ramulu, M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater. Sci. Eng. A 2014, 598, 327–337. [Google Scholar] [CrossRef]
- Leuders, S.; Thöne, M.; Riemer, A.; Niendorf, T.; Tröster, T.; Richard, H.a.; Maier, H. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue 2013, 48, 300–307. [Google Scholar] [CrossRef]
- Syed, A.K.; Ahmad, B.; Guo, H.; Machry, T.; Eatock, D.; Meyer, J.; Fitzpatrick, M.E.; Zhang, X. An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V. Mater. Sci. Eng. A 2019, 755, 246–257. [Google Scholar] [CrossRef]
- Kruth, J.P.; Deckers, J.; Yasa, E.; Wauthlé, R. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012, 226, 980–991. [Google Scholar] [CrossRef]
- Mercelis, P.; Kruth, J.P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006, 12, 254–265. [Google Scholar] [CrossRef]
- Withers, P.J.; Bhadeshia, H. Residual stress. Part 1—Measurement techniques. Mater. Sci. Technol. 2001, 17, 355–365. [Google Scholar] [CrossRef]
- Bartlett, J.L.; Li, X. An overview of residual stresses in metal powder bed fusion. Addit. Manuf. 2019, 27, 131–149. [Google Scholar] [CrossRef]
- Schajer, G.S. Practical Residual Stress Measurement Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Shiomi, M.; Osakada, K.; Nakamura, K.; Yamashita, T.; Abe, F. Residual stress within metallic model made by selective laser melting process. CIRP Ann. 2004, 53, 195–198. [Google Scholar] [CrossRef]
- Gouge, M.; Michaleris, P. Thermo-Mechanical Modeling of Additive Manufacturing; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Zaeh, M.F.; Branner, G. Investigations on residual stresses and deformations in selective laser melting. Prod. Eng. 2010, 4, 35–45. [Google Scholar] [CrossRef]
- Ganeriwala, R.; Strantza, M.; King, W.; Clausen, B.; Phan, T.Q.; Levine, L.E.; Brown, D.W.; Hodge, N. Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V. Addit. Manuf. 2019, 27, 489–502. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, D. A study on the residual stress during selective laser melting (SLM) of metallic powder. Int. J. Adv. Manuf. Technol. 2016, 87, 647–656. [Google Scholar] [CrossRef]
- Nadammal, N.; Kromm, A.; Saliwan-Neumann, R.; Farahbod, L.; Haberland, C.; Portella, P.D. Influence of support configurations on the characteristics of selective laser-melted inconel 718. JOM 2018, 70, 343–348. [Google Scholar] [CrossRef]
- Ali, H.; Ghadbeigi, H.; Mumtaz, K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A 2018, 712, 175–187. [Google Scholar] [CrossRef]
- Bagherifard, S.; Beretta, N.; Monti, S.; Riccio, M.; Bandini, M.; Guagliano, M. On the fatigue strength enhancement of additive manufactured AlSi10Mg parts by mechanical and thermal post-processing. Mater. Des. 2018, 145, 28–41. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, C.; Zhao, J.; Dong, Y. Effects of post-processing on the surface finish, porosity, residual stresses, and fatigue performance of additive manufactured metals: A review. J. Mater. Eng. Perform. 2021, 30, 6407–6425. [Google Scholar] [CrossRef] [PubMed]
- Ngnekou, J.N.D.; Nadot, Y.; Henaff, G.; Nicolai, J.; Kan, W.H.; Cairney, J.M.; Ridosz, L. Fatigue properties of AlSi10Mg produced by additive layer manufacturing. Int. J. Fatigue 2019, 119, 160–172. [Google Scholar] [CrossRef]
- Domfang Ngnekou, J.N.; Nadot, Y.; Henaff, G.; Nicolai, J.; Ridosz, L. Effect of As-Built and Ground Surfaces on the Fatigue Properties of AlSi10Mg Alloy Produced by Additive Manufacturing. Metals 2021, 11, 1432. [Google Scholar] [CrossRef]
- Farajian-Sohi, M.; Nitschke-Pagel, T.; Dilger, K. Residual stress relaxation of quasi-statically and cyclically-loaded steel welds. Weld. World 2010, 54, R49–R60. [Google Scholar] [CrossRef]
- Hensel, J.; Nitschke-Pagel, T.; Ngoula, D.T.; Beier, H.T.; Tchuindjang, D.; Zerbst, U. Welding residual stresses as needed for the prediction of fatigue crack propagation and fatigue strength. Eng. Fract. Mech. 2018, 198, 123–141. [Google Scholar] [CrossRef]
- Lee, C.H.; Chang, K.H.; Van Do, V.N. Finite element modeling of residual stress relaxation in steel butt welds under cyclic loading. Eng. Struct. 2015, 103, 63–71. [Google Scholar] [CrossRef]
- ASTM. ASTM Standard E606; Standard Test Method for Strain-Controlled Fatigue Testing. ASTM: West Conshohocken, PA, USA, 2012. [Google Scholar]
- ECSS-Q-ST-70-80C; Space Product Assurance—Processing and Quality Assurance Requirements for Metallic Powder Bed Fusion Technologies for Space Applications. European Cooperation for Space Standardization: Noordwijk, The Netherlands, 2021.
- ASTM. ASTM E739-10; Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data. ASTM: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Brownlee, K.; Hodges, J., Jr.; Rosenblatt, M. The up-and-down method with small samples. J. Am. Stat. Assoc. 1953, 48, 262–277. [Google Scholar] [CrossRef]
- Smith, D.; Farrahi, G.; Zhu, W.; McMahon, C. Experimental measurement and finite element simulation of the interaction between residual stresses and mechanical loading. Int. J. Fatigue 2001, 23, 293–302. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y.; Beretta, S. Small defects and inhomogeneities in fatigue strength: Experiments, models and statistical implications. Extremes 1999, 2, 123–147. [Google Scholar] [CrossRef]
- Beretta, S.; Murakami, Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials. Fatigue Fract. Eng. Mater. Struct. 1998, 21, 1049–1065. [Google Scholar] [CrossRef]
- Beretta, S. Affidabilità delle Costruzioni Meccaniche: Strumenti e Metodi per l’Affidabilità di un Progetto; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Dowling, N.E. Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 4th ed.; Pearson Higher Ed.: London, UK, 2013. [Google Scholar]
- Chaboche, J.L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 1989, 5, 247–302. [Google Scholar] [CrossRef]
- Zerbst, U.; Bruno, G.; Buffiere, J.Y.; Wegener, T.; Niendorf, T.; Wu, T.; Zhang, X.; Kashaev, N.; Meneghetti, G.; Hrabe, N.; et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges. Prog. Mater. Sci. 2021, 121, 100786. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Nezhadfar, P.; Shamsaei, N.; Seifi, M.; Beretta, S. High cycle fatigue behavior and life prediction for additively manufactured 17-4 PH stainless steel: Effect of sub-surface porosity and surface roughness. Theor. Appl. Fract. Mech. 2020, 106, 102477. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, S.; Bao, J.; Qian, W.; Karabal, S.; Sun, W.; Withers, P.J. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion. Int. J. Fatigue 2021, 151, 106317. [Google Scholar] [CrossRef]
- Miller, K. The short crack problem. Fatigue Fract. Eng. Mater. Struct. 1982, 5, 223–232. [Google Scholar] [CrossRef]
- SWRI. Fatigue Crack Growth Computer Program ‘NASGRO’ Version 4.2; Technical Report; Southwest Research Institute: San Antonio, TX, USA, 2004. [Google Scholar]
- Newman, J., Jr. A crack opening stress equation for fatigue crack growth. Int. J. Fract. 1984, 24, R131–R135. [Google Scholar] [CrossRef]
- McClung, R.C.; Enright, M.P.; Lee, Y.D.; Huyse, L.J.; Fitch, S.H. Efficient fracture design for complex turbine engine components. In Turbo Expo: Power for Land, Sea, and Air; ASME: New York, NY, USA, 2004; Volume 41715, pp. 291–300. [Google Scholar]
- Newman, J., Jr.; Raju, I. An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech. 1981, 15, 185–192. [Google Scholar] [CrossRef]
- Beghini, M.; Bertini, L. Fatigue crack propagation through residual stress fields with closure phenomena. Eng. Fract. Mech. 1990, 36, 379–387. [Google Scholar] [CrossRef]
- Wang, X.; Lambert, S. Stress intensity factors for low aspect ratio semi-elliptical surface cracks in finite-thickness plates subjected to nonuniform stresses. Eng. Fract. Mech. 1995, 51, 517–532. [Google Scholar] [CrossRef]
- Wang, X.; Lambert, S. Stress intensity factors and weight functions for high aspect ratio semi-elliptical surface cracks in finite-thickness plates. Eng. Fract. Mech. 1997, 57, 13–24. [Google Scholar] [CrossRef]
Series’ Code | Surface State | Global Load Ratio | Number of Tests |
---|---|---|---|
M | Machined | −1.0 | 12 |
NS | Net-shape | −1.0 | 29 |
SAB | Sandblasted | −1.0 | 19 |
Series’ Code | [MPa] | A | B | [Cycles] | ||
---|---|---|---|---|---|---|
M | 204.0 | 26.1473 | −8.6478 | 0.2632 | 0.0304 | 1,490,399 |
NS | 105.4 | 12.1314 | −3.2196 | 0.0955 | 0.0297 | 415,666 |
SAB | 176.9 | 30.4444 | −10.4728 | 0.2544 | 0.0243 | 8,043,806 |
Series’ Code | [µm] | [µm] | [µm] |
---|---|---|---|
M | 96.1 | 49.3 | 114.2 |
NS | 99.6 | 30.5 | 110.8 |
SAB | 116.7 | 33.2 | 128.8 |
[GPa] | [MPa] | [-] |
---|---|---|
73.7 | 852.5 | 0.2218 |
[MPa] | ||||||
---|---|---|---|---|---|---|
125.358 | 34,106.6 | 277.977 | 14,209.5 | 3151.75 | 7208.72 | 0.07791 |
Level | [MPa] | [MPa] | [MPa] |
---|---|---|---|
1 | 150 | 80 | 150 |
2 | 170 | 105 | 170 |
3 | 190 | 130 | 190 |
4 | 210 | 155 | 210 |
5 | 230 | 180 | 230 |
6 | 250 | 205 | 250 |
7 | 270 | 230 | 270 |
8 | 290 | 255 | 290 |
9 | 310 | 280 | 310 |
10 | 330 | 305 | 330 |
11 | 350 | 330 | 350 |
Type | [µm] | [µm] | [µm] | |
---|---|---|---|---|
M | 114.2 | 1.000 | 91.1 | 91.1 |
NS | 110.8 | 0.25 | 44.2 | 176.8 |
SAB | 128.8 | 0.25 | 51.4 | 205.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sausto, F.; Tezzele, C.; Beretta, S. Analysis of Fatigue Strength of L-PBF AlSi10Mg with Different Surface Post-Processes: Effect of Residual Stresses. Metals 2022, 12, 898. https://doi.org/10.3390/met12060898
Sausto F, Tezzele C, Beretta S. Analysis of Fatigue Strength of L-PBF AlSi10Mg with Different Surface Post-Processes: Effect of Residual Stresses. Metals. 2022; 12(6):898. https://doi.org/10.3390/met12060898
Chicago/Turabian StyleSausto, Francesco, Christian Tezzele, and Stefano Beretta. 2022. "Analysis of Fatigue Strength of L-PBF AlSi10Mg with Different Surface Post-Processes: Effect of Residual Stresses" Metals 12, no. 6: 898. https://doi.org/10.3390/met12060898
APA StyleSausto, F., Tezzele, C., & Beretta, S. (2022). Analysis of Fatigue Strength of L-PBF AlSi10Mg with Different Surface Post-Processes: Effect of Residual Stresses. Metals, 12(6), 898. https://doi.org/10.3390/met12060898