Tensile Properties of Melt-Extracted and Annealed Ni/Fe-Based Amorphous Metallic Fibers
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Summary
- (1)
- All the samples remained fully amorphous structure before and after annealing treatments. Both melt-extracted and annealed Ni/Fe-based AMFs exhibited brittle fracture characteristics.
- (2)
- The fracture angles of melt-extracted Ni- and Fe-based AMFs were different. This can be explained by the parameter α in the unified tensile fracture criterion, which reflects the differences of various materials and thereby affects their fracture angles.
- (3)
- Prolonging the annealing time or increasing the annealing temperature can lead to an increase in fracture stresses in both Ni- and Fe-based AMFs. The increasing of fracture stresses of annealed AMFs resulted from their lower free volume content compared with that of melt-extracted ones.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, J.; Luo, Q.; Di, S.; Zhang, Z.; Shen, B. Rejuvenation-to-Relaxation Transition Induced by Elastostatic Compression and Its Effect on Deformation Behavior in a Zr-Based Bulk Metallic Glass. Metals 2022, 12, 282. [Google Scholar] [CrossRef]
- Rösner, H.; Kübel, C.; Ostendorp, S.; Wilde, G. In Situ Generated Shear Bands in Metallic Glass Investigated by Atomic Force and Analytical Transmission Electron Microscopy. Metals 2022, 12, 111. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, T.; Li, L.; Yang, J.; Zhang, M.; Wang, C.; Zhang, Y. Fatigue Behavior of Zr58Cu15.46Ni12.74Al10.34Nb2.76Y0.5 Bulk Metallic Glass Fabricated by Industrial-Grade Zirconium Raw Material. Metals 2021, 11, 187. [Google Scholar] [CrossRef]
- Liu, J.; Pang, M.; Cao, G.; Qu, G.; Wang, X.; Zhang, Y.; Liu, R.; Shen, H. Comparative study of tensile properties and magnetic properties for Nb-doped Fe-based wires. J. Mater. Res. Technol. 2020, 9, 12907–12916. [Google Scholar] [CrossRef]
- Zhang, M.; Qu, G.; Liu, J.; Pang, M.; Wang, X.; Liu, R.; Cao, G.; Ma, G. Enhancement of Magnetic and Tensile Mechanical Performances in Fe-Based Metallic Microwires Induced by Trace Ni-Doping. Materials 2021, 14, 3589. [Google Scholar] [CrossRef]
- Zberg, B.; Arata, E.R.; Uggowitzer, P.J.; Löffler, J.F. Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater. 2009, 57, 3223–3231. [Google Scholar] [CrossRef]
- Wang, H.; Qin, F.X.; Xing, D.W.; Cao, F.Y.; Wang, X.D.; Peng, H.X.; Sun, J.F. Relating residual stress and microstructure to mechanical and giant magneto-impedance properties in cold-drawn Co-based amorphous microwires. Acta Mater. 2012, 60, 5425–5436. [Google Scholar] [CrossRef]
- Shweta, A.J.; Sumanth, T.; Chandra, S.M.; Zhonglue, H.; Molla, H.; Golden, K. Review of Thermoplastic Drawing with Bulk Metallic Glasses. Metals 2022, 12, 518. [Google Scholar]
- Wang, C.D.; Zhang, Z.H.; Xie, J.X. Influence of annealing on the magnetic and mechanical properties of glass-coated Fe69Col0Si8B13 microwires. J. Funct. Mater. Devices 2010, 16, 22–28. [Google Scholar]
- Belliveau, H.; Yu, Y.; Luo, Y.; Qin, F.; Wang, H.; Shen, H.; Sun, J.; Yu, S.; Srikanth, H.; Phan, M. Improving mechanical and magnetocaloric responses of amorphous melt-extracted Gd-based microwires via nanocrystallization. J. Alloys Compd. 2017, 692, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Zadorozhnyy, V. Review of the Recent Development in Metallic Glass and Its Composites. Metals 2021, 11, 1933. [Google Scholar] [CrossRef]
- Su, S.; Ning, Z.L.; Huang, Y.J.; Yang, T.; Wang, K.Y.; Jiang, M.Q.; Sun, J.F.; Jiang, S.D. Effect of strain rate on fracture reliability of Cu45Zr45Co10 amorphous alloy microwires by statistical analyses. J. Alloys Compd. 2022, 898, 162951. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Wang, Q.; Wu, M.; Nan, D.; Shen, H.; Peng, H. Enhanced Tensile Properties and Fracture Reliability of Cu-Based Amorphous Wires via Pr-Doping. Adv. Eng. Mater. 2018, 20, 1700935. [Google Scholar] [CrossRef]
- Huang, Y.; He, F.; Fan, H.; Shen, J. Ductile Ti-based metallic glass spheres. Scr. Mater. 2012, 67, 661–664. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, H.; Hui, X.; Chen, G.; Lu, Z. Effects of drawing on the tensile fracture strength and its reliability of small-sized metallic glasses. Acta Mater. 2010, 58, 2564–2576. [Google Scholar] [CrossRef]
- Huang, Y.J.; Ning, Z.L.; Shen, Z.; Liang, W.Z.; Sun, H.C.; Sun, J.F. Bending behavior of as-cast and annealed ZrCuNiAl bulk metallic glass. J. Mater. Sci. Technol. 2017, 33, 1153–1158. [Google Scholar] [CrossRef]
- Lee, M.; Kim, J.H.; Park, J.; Kim, J.; Kim, W.; Kim, D. Fabrication of Ni–Nb–Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process. Scr. Mater. 2004, 50, 1367–1371. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, C.; Porter, W. Role of yttrium in glass formation of Fe-based bulk metallic glasses. Appl. Phys. Lett. 2003, 83, 2581–2583. [Google Scholar] [CrossRef]
- He, M.; Chen, S.; Yu, P.; Xia, L. Enhanced mechanical properties of Ni62Nb38 bulk metallic glasses by Ta substitution. J. Non-Cryst. Solids 2017, 471, 452–455. [Google Scholar] [CrossRef]
- Ertugrul, O.; He, T.; Shahid, R.N.; Scudino, S. Effect of heat treatment on microstructure and mechanical properties of Al 2024 matrix composites reinforced with Ni60Nb40 metallic glass particles. J. Alloys Compd. 2019, 808, 151732. [Google Scholar] [CrossRef]
- Dong, K.; Kong, J.; Ruan, X.; Yang, Y.; Peng, Y.; Zhou, Q.; Wang, K. Thermoplastic brazing of TiAl-and Ni-based alloys utilizing a Ni-based bulk metallic glass as the filler metal. J. Mater. Sci. Eng. A 2021, 815, 141255. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Eckert, J. Unified tensile fracture criterion. Phys. Rev. Lett. 2005, 94, 094301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.F.; Eckert, J.; Schultz, L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 2003, 51, 1167–1179. [Google Scholar] [CrossRef]
- Wang, W.H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 2012, 57, 487–656. [Google Scholar] [CrossRef]
- Lewandowski, J.; Wang, W.; Greer, A. Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. 2005, 85, 77–87. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, C. Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 2003, 91, 115505. [Google Scholar] [CrossRef]
- Liu, J.; Cao, F.; Xing, D.; Zhang, L.; Qin, F.; Peng, H.; Xue, X.; Sun, J. Enhancing GMI properties of melt-extracted Co-based amorphous wires by twin-zone Joule annealing. J. Alloys Compd. 2012, 541, 215–221. [Google Scholar] [CrossRef]
- Spaepen, F. Homogeneous flow of metallic glasses: A free volume perspective. Scr. Mater. 2006, 54, 363–367. [Google Scholar] [CrossRef]
- Abrosimova, G.; Chirkova, V.; Pershina, E.; Volkov, N.; Sholin, I.; Aronin, A. The Effect of Free Volume on the Crystallization of Al87Ni8Gd5 Amorphous Alloy. Metals 2022, 12, 332. [Google Scholar] [CrossRef]
- Yue, G.; Zhang, Y.; Sun, Y.; Shen, B.; Dong, F.; Wang, Z.; Zhang, R.; Zheng, Y.; Kramer, M.; Wang, S. Local structure order in Pd78Cu6Si16 liquid. Sci. Rep. 2015, 5, 8277. [Google Scholar] [CrossRef] [Green Version]
- Dmowski, W.; Fan, C.; Morrison, M.; Liaw, P.; Egami, T. Structural changes in bulk metallic glass after annealing below the glass-transition temperature. Mater. Sci. Eng. A 2007, 471, 125–129. [Google Scholar] [CrossRef]
- Murali, P.; Ramamurty, U. Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater. 2005, 53, 1467–1478. [Google Scholar] [CrossRef]
- Ramamurty, U.; Lee, M.; Basu, J.; Li, Y. Embrittlement of a bulk metallic glass due to low-temperature annealing. Scr. Mater. 2002, 47, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Taub, A.; Spaepen, F. The kinetics of structural relaxation of a metallic glass. Acta Metall. 1980, 28, 1781–1788. [Google Scholar] [CrossRef]
- Wang, W.H.; Wang, R.J.; Yang, W.; Wei, B.; Wen, P.; Zhao, D.; Pan, M. Stability of ZrTiCuNiBe bulk metallic glass upon isothermal annealing near the glass transition temperature. J. Mater. Res. 2002, 17, 1385–1389. [Google Scholar] [CrossRef] [Green Version]
- Huo, L.; Zeng, J.; Wang, W.; Liu, C.T.; Yang, Y. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Mater. 2013, 61, 4329–4338. [Google Scholar] [CrossRef]
- Nagel, C.; Rätzke, K.; Schmidtke, E.; Wolff, J.; Geyer, U.; Faupel, F. Free-volume changes in the bulk metallic glass Zr46.7Ti8.3Cu7.5Ni10Be27.5 and the undercooled liquid. Phys. Rev. B 1998, 57, 10224. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.; Huang, Y.; Zhang, J.; Zhang, L.; Wang, H.; Ning, Z.; Sun, J. Tensile Properties of Melt-Extracted and Annealed Ni/Fe-Based Amorphous Metallic Fibers. Metals 2022, 12, 918. https://doi.org/10.3390/met12060918
Su S, Huang Y, Zhang J, Zhang L, Wang H, Ning Z, Sun J. Tensile Properties of Melt-Extracted and Annealed Ni/Fe-Based Amorphous Metallic Fibers. Metals. 2022; 12(6):918. https://doi.org/10.3390/met12060918
Chicago/Turabian StyleSu, Shuang, Yongjiang Huang, Jiapeng Zhang, Lunyong Zhang, Huan Wang, Zhiliang Ning, and Jianfei Sun. 2022. "Tensile Properties of Melt-Extracted and Annealed Ni/Fe-Based Amorphous Metallic Fibers" Metals 12, no. 6: 918. https://doi.org/10.3390/met12060918
APA StyleSu, S., Huang, Y., Zhang, J., Zhang, L., Wang, H., Ning, Z., & Sun, J. (2022). Tensile Properties of Melt-Extracted and Annealed Ni/Fe-Based Amorphous Metallic Fibers. Metals, 12(6), 918. https://doi.org/10.3390/met12060918